yolov8 opencv dnn部署自己的模型

源码地址

  1. 本人使用的opencv c++ github代码,代码作者非本人

使用github源码结合自己导出的onnx模型推理自己的视频

推理条件

windows 10

Visual Studio 2019

Nvidia GeForce GTX 1070

opencv4.7.0 (opencv4.5.5在别的地方看到不支持yolov8的推理,所以只使用opencv4.7.0)

导出yolov8模型

yolov8版本: version = '8.0.110'

首先将default.yaml中的一些配置修改以下,将只修改的部分贴上去,注意下面的batch一定要设置为1

python 复制代码
task: detect  # YOLO task, i.e. detect, segment, classify, pose
mode: export  # YOLO mode, i.e. train, val, predict, export, track, benchmark

# Train settings -------------------------------------------------------------------------------------------------------
# model: C:\Users\HUST\Desktop\yolov8_ultralytics\ultralytics\models\v8\yolov8.yaml # path to model file, i.e. yolov8n.pt, yolov8n.yaml
model: C:\Users\Administrator\Desktop\yolov8_ultralytics\runs\detect\yolov8n\weights\best.pt # path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: C:\Users\Administrator\Desktop\yolov8_ultralytics/ultralytics/datasets/custom.yaml # path to data file, i.e. coco128.yaml
weights: yolov8n.pt
epochs: 1  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 1  # number of images per batch (-1 for AutoBatch)

default.yaml中的export部分的配置也需要修改

python 复制代码
# Export settings ------------------------------------------------------------------------------------------------------
format: onnx  # format to export to
keras: False  # use Keras
optimize: False  # TorchScript: optimize for mobile
int8: False  # CoreML/TF INT8 quantization
dynamic: False  # ONNX/TF/TensorRT: dynamic axes
simplify: False  # ONNX: simplify model
opset: 12 # ONNX: opset version (optional)
workspace: 4  # TensorRT: workspace size (GB)
nms: False  # CoreML: add NMS

然后直接运行ultralytics/yolo/engine/exporter.py

测试一下导出的best.onnx可不可用,直接正常的val即可

将best.onnx模型放入netron中,onnx的输入和输出如下图1所示

图 1 图1 图1

c++部署

先将源码复制到下图位置中

环境和代码的大致步骤跟yolov5 opencv dnn部署 github代码一样

由于源码中使用的输入尺寸如图2是640 * 480的,我导出模型时使用的模型的输入如图1是640 * 640,所以需要对尺寸的那一部分需要进行修改,修改为640 * 640

cpp 复制代码
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.45;
const float NMS_THRESHOLD = 0.5;
const float CONFIDENCE_THRESHOLD = 0.25;


图 2 图2 图2在进行修改之后,就可以直接运行yolo.cpp

c++推理结果

yolov8_deploy_fire

相关推荐
利白26 分钟前
我的Qt作品(20)使用Qt+OpenCV写一个旋转/抠图/mask生成工具
qt·opencv·旋转·抠图·mask
小码贾1 小时前
OpenCV-Python实战(6)——图相运算
人工智能·python·opencv
西猫雷婶9 小时前
python学opencv|读取图像(十九)使用cv2.rectangle()绘制矩形
开发语言·python·opencv
烟波人长安吖~12 小时前
【目标跟踪+人流计数+人流热图(Web界面)】基于YOLOV11+Vue+SpringBoot+Flask+MySQL
vue.js·pytorch·spring boot·深度学习·yolo·目标跟踪
吃个糖糖18 小时前
33 Opencv ShiTomasi角点检测
人工智能·opencv·计算机视觉
一勺汤19 小时前
YOLO11改进-模块-引入星型运算Star Blocks
网络·yolo·目标检测·改进·魔改·yolov11·yolov11改进
pchmi20 小时前
C# OpenCV机器视觉:漫水填充
opencv·c#·机器视觉
红色的山茶花21 小时前
YOLOv9-0.1部分代码阅读笔记-anchor_generator.py
笔记·深度学习·yolo
吃个糖糖21 小时前
37 Opencv SIFT 特征检测
人工智能·opencv·计算机视觉
麦田里的稻草人w21 小时前
【YOLO】(基础篇一)YOLO介绍
人工智能·python·神经网络·yolo·机器学习