yolov8 opencv dnn部署自己的模型

源码地址

  1. 本人使用的opencv c++ github代码,代码作者非本人

使用github源码结合自己导出的onnx模型推理自己的视频

推理条件

windows 10

Visual Studio 2019

Nvidia GeForce GTX 1070

opencv4.7.0 (opencv4.5.5在别的地方看到不支持yolov8的推理,所以只使用opencv4.7.0)

导出yolov8模型

yolov8版本: version = '8.0.110'

首先将default.yaml中的一些配置修改以下,将只修改的部分贴上去,注意下面的batch一定要设置为1

python 复制代码
task: detect  # YOLO task, i.e. detect, segment, classify, pose
mode: export  # YOLO mode, i.e. train, val, predict, export, track, benchmark

# Train settings -------------------------------------------------------------------------------------------------------
# model: C:\Users\HUST\Desktop\yolov8_ultralytics\ultralytics\models\v8\yolov8.yaml # path to model file, i.e. yolov8n.pt, yolov8n.yaml
model: C:\Users\Administrator\Desktop\yolov8_ultralytics\runs\detect\yolov8n\weights\best.pt # path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: C:\Users\Administrator\Desktop\yolov8_ultralytics/ultralytics/datasets/custom.yaml # path to data file, i.e. coco128.yaml
weights: yolov8n.pt
epochs: 1  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 1  # number of images per batch (-1 for AutoBatch)

default.yaml中的export部分的配置也需要修改

python 复制代码
# Export settings ------------------------------------------------------------------------------------------------------
format: onnx  # format to export to
keras: False  # use Keras
optimize: False  # TorchScript: optimize for mobile
int8: False  # CoreML/TF INT8 quantization
dynamic: False  # ONNX/TF/TensorRT: dynamic axes
simplify: False  # ONNX: simplify model
opset: 12 # ONNX: opset version (optional)
workspace: 4  # TensorRT: workspace size (GB)
nms: False  # CoreML: add NMS

然后直接运行ultralytics/yolo/engine/exporter.py

测试一下导出的best.onnx可不可用,直接正常的val即可

将best.onnx模型放入netron中,onnx的输入和输出如下图1所示

图 1 图1 图1

c++部署

先将源码复制到下图位置中

环境和代码的大致步骤跟yolov5 opencv dnn部署 github代码一样

由于源码中使用的输入尺寸如图2是640 * 480的,我导出模型时使用的模型的输入如图1是640 * 640,所以需要对尺寸的那一部分需要进行修改,修改为640 * 640

cpp 复制代码
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.45;
const float NMS_THRESHOLD = 0.5;
const float CONFIDENCE_THRESHOLD = 0.25;


图 2 图2 图2在进行修改之后,就可以直接运行yolo.cpp

c++推理结果

yolov8_deploy_fire

相关推荐
云卷云舒___________4 小时前
【B站保姆级视频教程:Jetson配置YOLOv11环境(六)PyTorch&Torchvision安装】
人工智能·pytorch·yolo·教程·jetson·torchvision
dreadp11 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
人工智能教学实践21 小时前
基于 yolov8_pyqt5 自适应界面设计的火灾检测系统 demo:毕业设计参考
qt·yolo·课程设计
慕雪华年1 天前
【Linux】opencv在arm64上提示找不到libjasper-dev
linux·运维·opencv
paradoxjun1 天前
YOLOv8源码修改(4)- 实现YOLOv8模型剪枝(任意YOLO模型的简单剪枝)
深度学习·yolo·目标检测·剪枝
墨绿色的摆渡人1 天前
python | OpenCV小记(一):cv2.imread(f) 读取图像操作(待更新)
开发语言·python·opencv
没学上了1 天前
关于DNN检测中替换caff用Tensorflow的注意事项
人工智能·tensorflow·dnn
没学上了1 天前
落地 dnn对象检测
人工智能·神经网络·dnn
Quz1 天前
OpenCV:闭运算
图像处理·人工智能·opencv·计算机视觉
Quz2 天前
OpenCV:开运算
图像处理·人工智能·opencv·计算机视觉