spark-flink设计思想之吸星大法-1

Spark和Flink都是大数据处理框架,它们的设计思想有一些不同之处。以下是对它们设计思想的简要对比:

  1. 数据模型和计算模型

    • Spark:Spark使用弹性分布式数据集(RDD)作为其核心数据结构。RDD是只读的、不可变的、可以并行处理的不可变数据集合。Spark的计算模型是基于RDD的转换和动作,通过将一系列的转换操作串联起来形成一个有向无环图(DAG),然后按照任务调度器分配的资源进行计算。
    • Flink:Flink的核心数据结构是数据流和事件流。Flink的数据流模型是基于流处理和批处理的统一计算模型,既可以进行流处理也可以进行批处理。Flink的事件流可以处理无界和有界数据,并提供了基于事件时间的处理方式。
  2. 数据处理方式

    • Spark:Spark主要基于批量处理,设计理念是尽可能减少延迟,快速读取数据、处理数据。对于小批量数据的处理,Spark采用了宽窄依赖的分区策略,对于迭代算法等场景可以有效地利用内存资源。
    • Flink:Flink支持流处理和批处理,并可以在同一Flink程序中无缝地集成流处理和批处理。Flink的流处理是基于事件时间的,提供了对乱序事件和延迟事件的精确处理能力。
  3. 容错性

    • Spark:Spark使用RDD的依赖关系来检测故障,通过RDD的宽窄依赖关系来重新计算丢失的数据。这种基于RDD的容错机制使得Spark在故障恢复时具有较好的性能。
    • Flink:Flink提供了基于事件时间和水印的容错机制,可以处理乱序事件和延迟事件,并保证事件流的精确一致性。Flink的容错机制具有较低的恢复延迟。
  4. 性能优化

    • Spark:Spark通过将数据缓存在内存中、减少磁盘I/O操作等手段优化性能。它还提供了多种存储后端,如MemoryStore、DiskStore和Tachyon,以满足不同的数据持久性需求。
    • Flink:Flink提供了基于状态的后端存储,通过状态后端将状态数据存储在持久化存储中,并利用RocksDB作为状态后端。Flink还提供了基于RocksDB的状态后端,可以有效地管理状态数据并提高查询性能。
  5. 扩展性和灵活性

    • Spark:Spark具有较好的扩展性和灵活性,支持多种编程语言(如Scala、Python、Java和R)和多种数据源。Spark还提供了丰富的API和工具集,如Spark SQL、MLlib和GraphX等。
    • Flink:Flink也具有较好的扩展性和灵活性,支持多种编程语言(如Java、Scala、Python和C#)和多种数据源。Flink提供了丰富的API和工具集,如Table API、SQL API和CEP库等。

Spark和Flink在设计思想上有一些相似之处,主要体现在以下几个方面:

  1. 内存计算:Spark和Flink都采用了内存计算的设计理念,将数据存储在内存中以加速数据处理速度。与传统的磁盘计算相比,内存计算可以显著提高数据读取和计算的效率。
  2. 批处理和流处理统一:Spark和Flink都致力于实现批处理和流处理的统一。它们都提供了统一的API和数据处理模型,使得用户可以同时处理有界和无界数据,并在这两种处理模式之间无缝切换。
  3. 支持复杂数据转换操作:Spark和Flink都支持类似SQL的编程接口,使用类似于Scala Collection API的函数式编程模式,使得用户可以轻松地执行复杂的转换操作。
  4. 错误恢复:Spark和Flink都具备完善的错误恢复机制。它们都能够从故障中恢复,保证数据的一致性和可靠性。
  5. 支持Exactly Once语义一致性:Spark和Flink都支持Exactly Once语义一致性,确保数据处理的一致性,避免重复或遗漏数据。

综上所述,Spark和Flink在设计思想上的相似之处主要体现在内存计算、批流处理统一、复杂数据转换操作、错误恢复和支持Exactly Once语义一致性等方面。这些相似之处使得Spark和Flink在大数据处理领域都具有高效、稳定和灵活的特点。

相关推荐
zskj_zhyl2 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
哲科软件2 小时前
从“电话催维修“到“手机看进度“——售后服务系统开发如何重构客户体验
大数据·智能手机·重构
zzywxc7872 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
专注API从业者2 小时前
构建淘宝评论监控系统:API 接口开发与实时数据采集教程
大数据·前端·数据库·oracle
一瓣橙子4 小时前
缺少关键的 MapReduce 框架文件
大数据·mapreduce
永洪科技11 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
weixin_3077791311 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
上海锝秉工控14 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY14 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj15 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink