【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+第三步)-----CityscapesScripts生成自己的标签

本文是在前面两篇文章的基础上,讲解如何更改训练数据集颜色,需要与前面两篇文章连起来看。

本文用于修改cityscapes数据集的标签颜色与Semankitti数据集的标签一致,对修改后的数据集进行训练。需要下载两个开发工具包和一个数据集,分别是cityscapesScripts-master、semantic-kitti-api-master和cityscapes数据集:

  • cityscapesScripts是用于检查、准备和评估 Cityscapes 数据集的脚本。下载路径:

https://github.com/mcordts/cityscapesScripts

  • cityscapes数据集需要注册登录才能下载,下载链接:

Login -- Cityscapes Dataset

下载完成后,在cityscapesScripts-master中创建一个cityscapes文件夹,将下载好的两个文件分别放入其中,解压出来的说明文件直接删除即可,最终如下图:

  • semantic-kitti-api是用于打开、可视化、处理和评估 SemanticKITTI 数据集中的点云和标签结果的帮助程序脚本。下载路径:

https://github.com/PRBonn/semantic-kitti-api

一、制作标签步骤

1.1 更改标签颜色

进入目录cityscapesScripts-master\cityscapesscripts\helpers\labels.py中修改标签颜色与semantic-kitti-api-master\config\semanic-kitti.yaml中一致。注意:semantic-kitti-api-maste中的颜色是BGR颜色,cityscapesScripts中的颜色是RGB颜色,颠倒一下

cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签:

semantic-kitti-api-master\config\semanic-kitti.yaml标签:

修改后的cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签,可以直接拷贝使用:

python 复制代码
labels = [
    #       name                     id    trainId   category            catId     hasInstances   ignoreInEval   color
    Label(  'unlabeled'            ,  0 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'ego vehicle'          ,  1 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'rectification border' ,  2 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'out of roi'           ,  3 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'static'               ,  4 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'dynamic'              ,  5 ,      255 , 'void'            , 0       , False        , True         , (111, 74,  0) ),
# Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 81,  0, 81) ),
    Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 175,  0, 75) ),
# Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (128, 64,128) ),
    Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (255, 0,255) ),
# Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (244, 35,232) ),
    Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (75, 0,75) ),
# Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (250,170,160) ),
    Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (255,150,255) ),
# Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (230,150,140) ),
    Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (0,0,255) ),
# Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 70, 70, 70) ),
    Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 255, 200, 0) ),
# Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (102,102,156) ),
    Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (255,150,0) ),
# Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (190,153,153) ),
    Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (255,120,50) ),
# Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (180,165,180) ),
    Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (150,100,100) ),
    Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (150,120, 90) ),
    Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (255,150, 0) ),
# Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (153,153,153) ),
    Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (255,240,150) ),
# Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (153,153,153) ),
    Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (50,255,255) ),
# Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (250,170, 30) ),
    Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (50,255, 255) ),
# Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (220,220,  0) ),
    Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (255,0,  0) ),
# Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (107,142, 35) ),
    Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (0,175, 0) ),
# Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (152,251,152) ),
    Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (150,240,80) ),
# Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 70,130,180) ),
    Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 0,0,0) ),
# Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (220, 20, 60) ),
    Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (255, 30, 30) ),
# Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  0,  0) ),
    Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  40,  200) ),
# Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  0,  0,142) ),
    Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  100,  150,245) ),
# Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  0,  0, 70) ),
    Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  80,  30, 180) ),
# Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  0, 60,100) ),
    Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  100, 80,250) ),
# Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 90) ),
    Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 255) ),
# Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,110) ),
    Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,255) ),
# Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 80,100) ),
    Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 0,255) ),
# Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  0,  0,230) ),
    Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  30,  60,150) ),
# Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (119, 11, 32) ),
    Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (100, 230, 245) ),
# Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,142) ),
    Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,255) ),
]

1.2 生成训练标签

1.2.1 生成labelIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码:

复制代码
 # 运行成功后会在cityscapes数据集中生成_labelTrainIds结尾的训练文件
 python  .\createTrainIdLabelImgs.py 

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个修改好的训练标签(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.2 生成instanceIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码

复制代码
#  # 运行成功后会在cityscapes数据集中生成_instanceTrainIds结尾的训练文件
python .\createTrainIdInstanceImgs.py

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个另一个实例训练标签,(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.3 修改DeepLabV3Plus-Pytorch中datasets\cityscapes.py中RGB值

训练之前,修改datasets\cityscapes.py文件中标签RGB值与cityscapesScripts-master中一致,可直接使用:

修改好的标签代码如下:

python 复制代码
CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', 'category', 'category_id',
                                                     'has_instances', 'ignore_in_eval', 'color'])
    classes = [
        CityscapesClass('unlabeled',            0, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('ego vehicle',          1, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('out of roi',           3, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('static',               4, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('dynamic',              5, 255, 'void', 0, False, True, (111, 74, 0)),
    # CityscapesClass('ground',               6, 255, 'void', 0, False, True, (81, 0, 81)),
        CityscapesClass('ground',               6, 255, 'void', 0, False, True, (175, 0, 75)),
    # CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (128, 64, 128)),
        CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (255, 0, 255)),
    # CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (244, 35, 232)),
        CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (75, 0, 75)),
    # CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (250, 170, 160)),
        CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (255, 150, 255)),
    # CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (230, 150, 140)),
        CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (0, 0, 255)),
    # CityscapesClass('building',             11, 2, 'construction', 2, False, False, (70, 70, 70)),
        CityscapesClass('building',             11, 2, 'construction', 2, False, False, (255, 200, 0)),
    # CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (102, 102, 156)),
        CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (255, 150, 0)),
    # CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (190, 153, 153)),
        CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (255, 120, 50)),
    # CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (180, 165, 180)),
        CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (150, 100, 100)),
        CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (150, 120, 90)),
        CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (153, 153, 153)),
        CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (255, 240, 150)),
    # CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (153, 153, 153)),
        CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (50, 255, 255)),
    # CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (250, 170, 30)),
        CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (50, 255, 255)),
    # CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (220, 220, 0)),
        CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (255, 0, 0)),
    # CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (107, 142, 35)),
        CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (0, 175, 0)),
    # CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (152, 251, 152)),
        CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (150, 240, 80)),
    # CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (70, 130, 180)),
        CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (0, 0, 0)),
    # CityscapesClass('person',               24, 11, 'human', 6, True, False, (220, 20, 60)),
        CityscapesClass('person',               24, 11, 'human', 6, True, False, (255, 30, 30)),
    # CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 0, 0)),
        CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 40, 200)),
    # CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (0, 0, 142)),
        CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (100, 150, 245)),
    # CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (0, 0, 70)),
        CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (80, 30, 180)),
    # CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (0, 60, 100)),
        CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (100, 80, 250)),
    # CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 90)),
        CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 110)),
        CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 80, 100)),
        CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 0, 255)),
    # CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (0, 0, 230)),
        CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (30, 60, 150)),
    # CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (119, 11, 32)),
        CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (100, 230, 245)),
        CityscapesClass('license plate',        -1, 255, 'vehicle', 7, False, True, (0, 0, 255)),
    ]

更改完成后,在DeepLabV3Plus-Pytorch-master中训练,即可得到训练后的新结果:

相关推荐
Wnq100725 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴5 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案5 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵5 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower5 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122465 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
C++业余爱好者6 小时前
Java 提供了8种基本数据类型及封装类型介绍
java·开发语言·python
老蒋新思维6 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
java1234_小锋6 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
大刘讲IT6 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造