【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+第三步)-----CityscapesScripts生成自己的标签

本文是在前面两篇文章的基础上,讲解如何更改训练数据集颜色,需要与前面两篇文章连起来看。

本文用于修改cityscapes数据集的标签颜色与Semankitti数据集的标签一致,对修改后的数据集进行训练。需要下载两个开发工具包和一个数据集,分别是cityscapesScripts-master、semantic-kitti-api-master和cityscapes数据集:

  • cityscapesScripts是用于检查、准备和评估 Cityscapes 数据集的脚本。下载路径:

https://github.com/mcordts/cityscapesScripts

  • cityscapes数据集需要注册登录才能下载,下载链接:

Login -- Cityscapes Dataset

下载完成后,在cityscapesScripts-master中创建一个cityscapes文件夹,将下载好的两个文件分别放入其中,解压出来的说明文件直接删除即可,最终如下图:

  • semantic-kitti-api是用于打开、可视化、处理和评估 SemanticKITTI 数据集中的点云和标签结果的帮助程序脚本。下载路径:

https://github.com/PRBonn/semantic-kitti-api

一、制作标签步骤

1.1 更改标签颜色

进入目录cityscapesScripts-master\cityscapesscripts\helpers\labels.py中修改标签颜色与semantic-kitti-api-master\config\semanic-kitti.yaml中一致。注意:semantic-kitti-api-maste中的颜色是BGR颜色,cityscapesScripts中的颜色是RGB颜色,颠倒一下

cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签:

semantic-kitti-api-master\config\semanic-kitti.yaml标签:

修改后的cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签,可以直接拷贝使用:

python 复制代码
labels = [
    #       name                     id    trainId   category            catId     hasInstances   ignoreInEval   color
    Label(  'unlabeled'            ,  0 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'ego vehicle'          ,  1 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'rectification border' ,  2 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'out of roi'           ,  3 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'static'               ,  4 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'dynamic'              ,  5 ,      255 , 'void'            , 0       , False        , True         , (111, 74,  0) ),
# Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 81,  0, 81) ),
    Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 175,  0, 75) ),
# Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (128, 64,128) ),
    Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (255, 0,255) ),
# Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (244, 35,232) ),
    Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (75, 0,75) ),
# Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (250,170,160) ),
    Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (255,150,255) ),
# Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (230,150,140) ),
    Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (0,0,255) ),
# Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 70, 70, 70) ),
    Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 255, 200, 0) ),
# Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (102,102,156) ),
    Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (255,150,0) ),
# Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (190,153,153) ),
    Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (255,120,50) ),
# Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (180,165,180) ),
    Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (150,100,100) ),
    Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (150,120, 90) ),
    Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (255,150, 0) ),
# Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (153,153,153) ),
    Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (255,240,150) ),
# Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (153,153,153) ),
    Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (50,255,255) ),
# Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (250,170, 30) ),
    Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (50,255, 255) ),
# Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (220,220,  0) ),
    Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (255,0,  0) ),
# Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (107,142, 35) ),
    Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (0,175, 0) ),
# Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (152,251,152) ),
    Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (150,240,80) ),
# Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 70,130,180) ),
    Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 0,0,0) ),
# Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (220, 20, 60) ),
    Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (255, 30, 30) ),
# Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  0,  0) ),
    Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  40,  200) ),
# Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  0,  0,142) ),
    Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  100,  150,245) ),
# Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  0,  0, 70) ),
    Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  80,  30, 180) ),
# Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  0, 60,100) ),
    Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  100, 80,250) ),
# Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 90) ),
    Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 255) ),
# Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,110) ),
    Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,255) ),
# Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 80,100) ),
    Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 0,255) ),
# Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  0,  0,230) ),
    Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  30,  60,150) ),
# Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (119, 11, 32) ),
    Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (100, 230, 245) ),
# Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,142) ),
    Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,255) ),
]

1.2 生成训练标签

1.2.1 生成labelIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码:

复制代码
 # 运行成功后会在cityscapes数据集中生成_labelTrainIds结尾的训练文件
 python  .\createTrainIdLabelImgs.py 

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个修改好的训练标签(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.2 生成instanceIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码

复制代码
#  # 运行成功后会在cityscapes数据集中生成_instanceTrainIds结尾的训练文件
python .\createTrainIdInstanceImgs.py

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个另一个实例训练标签,(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.3 修改DeepLabV3Plus-Pytorch中datasets\cityscapes.py中RGB值

训练之前,修改datasets\cityscapes.py文件中标签RGB值与cityscapesScripts-master中一致,可直接使用:

修改好的标签代码如下:

python 复制代码
CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', 'category', 'category_id',
                                                     'has_instances', 'ignore_in_eval', 'color'])
    classes = [
        CityscapesClass('unlabeled',            0, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('ego vehicle',          1, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('out of roi',           3, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('static',               4, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('dynamic',              5, 255, 'void', 0, False, True, (111, 74, 0)),
    # CityscapesClass('ground',               6, 255, 'void', 0, False, True, (81, 0, 81)),
        CityscapesClass('ground',               6, 255, 'void', 0, False, True, (175, 0, 75)),
    # CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (128, 64, 128)),
        CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (255, 0, 255)),
    # CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (244, 35, 232)),
        CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (75, 0, 75)),
    # CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (250, 170, 160)),
        CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (255, 150, 255)),
    # CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (230, 150, 140)),
        CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (0, 0, 255)),
    # CityscapesClass('building',             11, 2, 'construction', 2, False, False, (70, 70, 70)),
        CityscapesClass('building',             11, 2, 'construction', 2, False, False, (255, 200, 0)),
    # CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (102, 102, 156)),
        CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (255, 150, 0)),
    # CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (190, 153, 153)),
        CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (255, 120, 50)),
    # CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (180, 165, 180)),
        CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (150, 100, 100)),
        CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (150, 120, 90)),
        CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (153, 153, 153)),
        CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (255, 240, 150)),
    # CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (153, 153, 153)),
        CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (50, 255, 255)),
    # CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (250, 170, 30)),
        CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (50, 255, 255)),
    # CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (220, 220, 0)),
        CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (255, 0, 0)),
    # CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (107, 142, 35)),
        CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (0, 175, 0)),
    # CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (152, 251, 152)),
        CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (150, 240, 80)),
    # CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (70, 130, 180)),
        CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (0, 0, 0)),
    # CityscapesClass('person',               24, 11, 'human', 6, True, False, (220, 20, 60)),
        CityscapesClass('person',               24, 11, 'human', 6, True, False, (255, 30, 30)),
    # CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 0, 0)),
        CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 40, 200)),
    # CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (0, 0, 142)),
        CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (100, 150, 245)),
    # CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (0, 0, 70)),
        CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (80, 30, 180)),
    # CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (0, 60, 100)),
        CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (100, 80, 250)),
    # CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 90)),
        CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 110)),
        CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 80, 100)),
        CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 0, 255)),
    # CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (0, 0, 230)),
        CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (30, 60, 150)),
    # CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (119, 11, 32)),
        CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (100, 230, 245)),
        CityscapesClass('license plate',        -1, 255, 'vehicle', 7, False, True, (0, 0, 255)),
    ]

更改完成后,在DeepLabV3Plus-Pytorch-master中训练,即可得到训练后的新结果:

相关推荐
lpfasd1234 分钟前
AI Phone下的各类App该何去何从
人工智能
路长冬9 分钟前
深度学习评估指标:
深度学习
路长冬12 分钟前
python基本语法
python
superman超哥15 分钟前
仓颉语言中错误恢复策略的深度剖析与工程实践
c语言·开发语言·c++·python·仓颉
玖日大大17 分钟前
LangGraph 深度解析:构建强大智能体的新一代框架
人工智能·语言模型·架构·langchain
GISer_Jing22 分钟前
Nano Banana:AI图像生成与编辑新标杆
前端·javascript·人工智能
海上飞猪33 分钟前
【Python基础】python判空
python
梦幻精灵_cq1 小时前
Linux.date格式化标识“制作”极简台历 vs Python.datetime.strftime格式化“精美”日历牌(时间工具依情境选择也是一种“智慧)
linux·python
新元代码1 小时前
Function Calling的现状和未来的发展
人工智能
jinxinyuuuus1 小时前
订阅指挥中心:数据可移植性、Schema设计与用户数据主权
数据仓库·人工智能