【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+第三步)-----CityscapesScripts生成自己的标签

本文是在前面两篇文章的基础上,讲解如何更改训练数据集颜色,需要与前面两篇文章连起来看。

本文用于修改cityscapes数据集的标签颜色与Semankitti数据集的标签一致,对修改后的数据集进行训练。需要下载两个开发工具包和一个数据集,分别是cityscapesScripts-master、semantic-kitti-api-master和cityscapes数据集:

  • cityscapesScripts是用于检查、准备和评估 Cityscapes 数据集的脚本。下载路径:

https://github.com/mcordts/cityscapesScripts

  • cityscapes数据集需要注册登录才能下载,下载链接:

Login -- Cityscapes Dataset

下载完成后,在cityscapesScripts-master中创建一个cityscapes文件夹,将下载好的两个文件分别放入其中,解压出来的说明文件直接删除即可,最终如下图:

  • semantic-kitti-api是用于打开、可视化、处理和评估 SemanticKITTI 数据集中的点云和标签结果的帮助程序脚本。下载路径:

https://github.com/PRBonn/semantic-kitti-api

一、制作标签步骤

1.1 更改标签颜色

进入目录cityscapesScripts-master\cityscapesscripts\helpers\labels.py中修改标签颜色与semantic-kitti-api-master\config\semanic-kitti.yaml中一致。注意:semantic-kitti-api-maste中的颜色是BGR颜色,cityscapesScripts中的颜色是RGB颜色,颠倒一下

cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签:

semantic-kitti-api-master\config\semanic-kitti.yaml标签:

修改后的cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签,可以直接拷贝使用:

python 复制代码
labels = [
    #       name                     id    trainId   category            catId     hasInstances   ignoreInEval   color
    Label(  'unlabeled'            ,  0 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'ego vehicle'          ,  1 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'rectification border' ,  2 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'out of roi'           ,  3 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'static'               ,  4 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'dynamic'              ,  5 ,      255 , 'void'            , 0       , False        , True         , (111, 74,  0) ),
# Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 81,  0, 81) ),
    Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 175,  0, 75) ),
# Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (128, 64,128) ),
    Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (255, 0,255) ),
# Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (244, 35,232) ),
    Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (75, 0,75) ),
# Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (250,170,160) ),
    Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (255,150,255) ),
# Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (230,150,140) ),
    Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (0,0,255) ),
# Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 70, 70, 70) ),
    Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 255, 200, 0) ),
# Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (102,102,156) ),
    Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (255,150,0) ),
# Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (190,153,153) ),
    Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (255,120,50) ),
# Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (180,165,180) ),
    Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (150,100,100) ),
    Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (150,120, 90) ),
    Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (255,150, 0) ),
# Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (153,153,153) ),
    Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (255,240,150) ),
# Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (153,153,153) ),
    Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (50,255,255) ),
# Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (250,170, 30) ),
    Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (50,255, 255) ),
# Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (220,220,  0) ),
    Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (255,0,  0) ),
# Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (107,142, 35) ),
    Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (0,175, 0) ),
# Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (152,251,152) ),
    Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (150,240,80) ),
# Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 70,130,180) ),
    Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 0,0,0) ),
# Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (220, 20, 60) ),
    Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (255, 30, 30) ),
# Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  0,  0) ),
    Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  40,  200) ),
# Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  0,  0,142) ),
    Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  100,  150,245) ),
# Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  0,  0, 70) ),
    Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  80,  30, 180) ),
# Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  0, 60,100) ),
    Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  100, 80,250) ),
# Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 90) ),
    Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 255) ),
# Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,110) ),
    Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,255) ),
# Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 80,100) ),
    Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 0,255) ),
# Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  0,  0,230) ),
    Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  30,  60,150) ),
# Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (119, 11, 32) ),
    Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (100, 230, 245) ),
# Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,142) ),
    Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,255) ),
]

1.2 生成训练标签

1.2.1 生成labelIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码:

复制代码
 # 运行成功后会在cityscapes数据集中生成_labelTrainIds结尾的训练文件
 python  .\createTrainIdLabelImgs.py 

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个修改好的训练标签(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.2 生成instanceIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码

复制代码
#  # 运行成功后会在cityscapes数据集中生成_instanceTrainIds结尾的训练文件
python .\createTrainIdInstanceImgs.py

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个另一个实例训练标签,(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.3 修改DeepLabV3Plus-Pytorch中datasets\cityscapes.py中RGB值

训练之前,修改datasets\cityscapes.py文件中标签RGB值与cityscapesScripts-master中一致,可直接使用:

修改好的标签代码如下:

python 复制代码
CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', 'category', 'category_id',
                                                     'has_instances', 'ignore_in_eval', 'color'])
    classes = [
        CityscapesClass('unlabeled',            0, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('ego vehicle',          1, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('out of roi',           3, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('static',               4, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('dynamic',              5, 255, 'void', 0, False, True, (111, 74, 0)),
    # CityscapesClass('ground',               6, 255, 'void', 0, False, True, (81, 0, 81)),
        CityscapesClass('ground',               6, 255, 'void', 0, False, True, (175, 0, 75)),
    # CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (128, 64, 128)),
        CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (255, 0, 255)),
    # CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (244, 35, 232)),
        CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (75, 0, 75)),
    # CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (250, 170, 160)),
        CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (255, 150, 255)),
    # CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (230, 150, 140)),
        CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (0, 0, 255)),
    # CityscapesClass('building',             11, 2, 'construction', 2, False, False, (70, 70, 70)),
        CityscapesClass('building',             11, 2, 'construction', 2, False, False, (255, 200, 0)),
    # CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (102, 102, 156)),
        CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (255, 150, 0)),
    # CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (190, 153, 153)),
        CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (255, 120, 50)),
    # CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (180, 165, 180)),
        CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (150, 100, 100)),
        CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (150, 120, 90)),
        CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (153, 153, 153)),
        CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (255, 240, 150)),
    # CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (153, 153, 153)),
        CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (50, 255, 255)),
    # CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (250, 170, 30)),
        CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (50, 255, 255)),
    # CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (220, 220, 0)),
        CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (255, 0, 0)),
    # CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (107, 142, 35)),
        CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (0, 175, 0)),
    # CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (152, 251, 152)),
        CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (150, 240, 80)),
    # CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (70, 130, 180)),
        CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (0, 0, 0)),
    # CityscapesClass('person',               24, 11, 'human', 6, True, False, (220, 20, 60)),
        CityscapesClass('person',               24, 11, 'human', 6, True, False, (255, 30, 30)),
    # CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 0, 0)),
        CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 40, 200)),
    # CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (0, 0, 142)),
        CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (100, 150, 245)),
    # CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (0, 0, 70)),
        CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (80, 30, 180)),
    # CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (0, 60, 100)),
        CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (100, 80, 250)),
    # CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 90)),
        CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 110)),
        CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 80, 100)),
        CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 0, 255)),
    # CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (0, 0, 230)),
        CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (30, 60, 150)),
    # CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (119, 11, 32)),
        CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (100, 230, 245)),
        CityscapesClass('license plate',        -1, 255, 'vehicle', 7, False, True, (0, 0, 255)),
    ]

更改完成后,在DeepLabV3Plus-Pytorch-master中训练,即可得到训练后的新结果:

相关推荐
sinat_286945192 分钟前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
没有bug.的程序员2 分钟前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋27 分钟前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
迈火1 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
AntBlack1 小时前
不当韭菜V1.1 :增强能力 ,辅助构建自己的交易规则
后端·python·pyqt
Moshow郑锴2 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR3 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢3 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1433 小时前
51c自动驾驶~合集14
人工智能
杜子不疼.3 小时前
《Python学习之字典(一):基础操作与核心用法》
开发语言·python·学习