【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+第三步)-----CityscapesScripts生成自己的标签

本文是在前面两篇文章的基础上,讲解如何更改训练数据集颜色,需要与前面两篇文章连起来看。

本文用于修改cityscapes数据集的标签颜色与Semankitti数据集的标签一致,对修改后的数据集进行训练。需要下载两个开发工具包和一个数据集,分别是cityscapesScripts-master、semantic-kitti-api-master和cityscapes数据集:

  • cityscapesScripts是用于检查、准备和评估 Cityscapes 数据集的脚本。下载路径:

https://github.com/mcordts/cityscapesScripts

  • cityscapes数据集需要注册登录才能下载,下载链接:

Login -- Cityscapes Dataset

下载完成后,在cityscapesScripts-master中创建一个cityscapes文件夹,将下载好的两个文件分别放入其中,解压出来的说明文件直接删除即可,最终如下图:

  • semantic-kitti-api是用于打开、可视化、处理和评估 SemanticKITTI 数据集中的点云和标签结果的帮助程序脚本。下载路径:

https://github.com/PRBonn/semantic-kitti-api

一、制作标签步骤

1.1 更改标签颜色

进入目录cityscapesScripts-master\cityscapesscripts\helpers\labels.py中修改标签颜色与semantic-kitti-api-master\config\semanic-kitti.yaml中一致。注意:semantic-kitti-api-maste中的颜色是BGR颜色,cityscapesScripts中的颜色是RGB颜色,颠倒一下

cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签:

semantic-kitti-api-master\config\semanic-kitti.yaml标签:

修改后的cityscapesScripts-master\cityscapesscripts\helpers\labels.py标签,可以直接拷贝使用:

python 复制代码
labels = [
    #       name                     id    trainId   category            catId     hasInstances   ignoreInEval   color
    Label(  'unlabeled'            ,  0 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'ego vehicle'          ,  1 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'rectification border' ,  2 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'out of roi'           ,  3 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'static'               ,  4 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'dynamic'              ,  5 ,      255 , 'void'            , 0       , False        , True         , (111, 74,  0) ),
# Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 81,  0, 81) ),
    Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 175,  0, 75) ),
# Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (128, 64,128) ),
    Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (255, 0,255) ),
# Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (244, 35,232) ),
    Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (75, 0,75) ),
# Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (250,170,160) ),
    Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (255,150,255) ),
# Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (230,150,140) ),
    Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (0,0,255) ),
# Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 70, 70, 70) ),
    Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 255, 200, 0) ),
# Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (102,102,156) ),
    Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (255,150,0) ),
# Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (190,153,153) ),
    Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (255,120,50) ),
# Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (180,165,180) ),
    Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (150,100,100) ),
    Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (255,150,0) ),
# Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (150,120, 90) ),
    Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (255,150, 0) ),
# Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (153,153,153) ),
    Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (255,240,150) ),
# Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (153,153,153) ),
    Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (50,255,255) ),
# Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (250,170, 30) ),
    Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (50,255, 255) ),
# Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (220,220,  0) ),
    Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (255,0,  0) ),
# Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (107,142, 35) ),
    Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (0,175, 0) ),
# Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (152,251,152) ),
    Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (150,240,80) ),
# Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 70,130,180) ),
    Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 0,0,0) ),
# Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (220, 20, 60) ),
    Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (255, 30, 30) ),
# Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  0,  0) ),
    Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  40,  200) ),
# Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  0,  0,142) ),
    Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  100,  150,245) ),
# Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  0,  0, 70) ),
    Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  80,  30, 180) ),
# Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  0, 60,100) ),
    Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  100, 80,250) ),
# Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 90) ),
    Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 255) ),
# Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,110) ),
    Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,255) ),
# Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 80,100) ),
    Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 0,255) ),
# Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  0,  0,230) ),
    Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  30,  60,150) ),
# Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (119, 11, 32) ),
    Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (100, 230, 245) ),
# Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,142) ),
    Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,255) ),
]

1.2 生成训练标签

1.2.1 生成labelIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码:

复制代码
 # 运行成功后会在cityscapes数据集中生成_labelTrainIds结尾的训练文件
 python  .\createTrainIdLabelImgs.py 

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个修改好的训练标签(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.2 生成instanceIds标签

进入目录:cityscapesScripts-master\cityscapesscripts\preparation中

运行下面代码

复制代码
#  # 运行成功后会在cityscapes数据集中生成_instanceTrainIds结尾的训练文件
python .\createTrainIdInstanceImgs.py

此时进入cityscapesScripts-master\cityscapes\gtFine\train中任何一个城市,会发现多了一个另一个实例训练标签,(gtFine中test、train和val中均多了一个训练标签,不一一展示):

2.3 修改DeepLabV3Plus-Pytorch中datasets\cityscapes.py中RGB值

训练之前,修改datasets\cityscapes.py文件中标签RGB值与cityscapesScripts-master中一致,可直接使用:

修改好的标签代码如下:

python 复制代码
CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', 'category', 'category_id',
                                                     'has_instances', 'ignore_in_eval', 'color'])
    classes = [
        CityscapesClass('unlabeled',            0, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('ego vehicle',          1, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('out of roi',           3, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('static',               4, 255, 'void', 0, False, True, (0, 0, 0)),
        CityscapesClass('dynamic',              5, 255, 'void', 0, False, True, (111, 74, 0)),
    # CityscapesClass('ground',               6, 255, 'void', 0, False, True, (81, 0, 81)),
        CityscapesClass('ground',               6, 255, 'void', 0, False, True, (175, 0, 75)),
    # CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (128, 64, 128)),
        CityscapesClass('road',                 7, 0, 'flat', 1, False, False, (255, 0, 255)),
    # CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (244, 35, 232)),
        CityscapesClass('sidewalk',             8, 1, 'flat', 1, False, False, (75, 0, 75)),
    # CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (250, 170, 160)),
        CityscapesClass('parking',              9, 255, 'flat', 1, False, True, (255, 150, 255)),
    # CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (230, 150, 140)),
        CityscapesClass('rail track',           10, 255, 'flat', 1, False, True, (0, 0, 255)),
    # CityscapesClass('building',             11, 2, 'construction', 2, False, False, (70, 70, 70)),
        CityscapesClass('building',             11, 2, 'construction', 2, False, False, (255, 200, 0)),
    # CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (102, 102, 156)),
        CityscapesClass('wall',                 12, 3, 'construction', 2, False, False, (255, 150, 0)),
    # CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (190, 153, 153)),
        CityscapesClass('fence',                13, 4, 'construction', 2, False, False, (255, 120, 50)),
    # CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (180, 165, 180)),
        CityscapesClass('guard rail',           14, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (150, 100, 100)),
        CityscapesClass('bridge',               15, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (150, 120, 90)),
        CityscapesClass('tunnel',               16, 255, 'construction', 2, False, True, (255, 150, 0)),
    # CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (153, 153, 153)),
        CityscapesClass('pole',                 17, 5, 'object', 3, False, False, (255, 240, 150)),
    # CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (153, 153, 153)),
        CityscapesClass('polegroup',            18, 255, 'object', 3, False, True, (50, 255, 255)),
    # CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (250, 170, 30)),
        CityscapesClass('traffic light',        19, 6, 'object', 3, False, False, (50, 255, 255)),
    # CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (220, 220, 0)),
        CityscapesClass('traffic sign',         20, 7, 'object', 3, False, False, (255, 0, 0)),
    # CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (107, 142, 35)),
        CityscapesClass('vegetation',           21, 8, 'nature', 4, False, False, (0, 175, 0)),
    # CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (152, 251, 152)),
        CityscapesClass('terrain',              22, 9, 'nature', 4, False, False, (150, 240, 80)),
    # CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (70, 130, 180)),
        CityscapesClass('sky',                  23, 10, 'sky', 5, False, False, (0, 0, 0)),
    # CityscapesClass('person',               24, 11, 'human', 6, True, False, (220, 20, 60)),
        CityscapesClass('person',               24, 11, 'human', 6, True, False, (255, 30, 30)),
    # CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 0, 0)),
        CityscapesClass('rider',                25, 12, 'human', 6, True, False, (255, 40, 200)),
    # CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (0, 0, 142)),
        CityscapesClass('car',                  26, 13, 'vehicle', 7, True, False, (100, 150, 245)),
    # CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (0, 0, 70)),
        CityscapesClass('truck',                27, 14, 'vehicle', 7, True, False, (80, 30, 180)),
    # CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (0, 60, 100)),
        CityscapesClass('bus',                  28, 15, 'vehicle', 7, True, False, (100, 80, 250)),
    # CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 90)),
        CityscapesClass('caravan',              29, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 110)),
        CityscapesClass('trailer',              30, 255, 'vehicle', 7, True, True, (0, 0, 255)),
    # CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 80, 100)),
        CityscapesClass('train',                31, 16, 'vehicle', 7, True, False, (0, 0, 255)),
    # CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (0, 0, 230)),
        CityscapesClass('motorcycle',           32, 17, 'vehicle', 7, True, False, (30, 60, 150)),
    # CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (119, 11, 32)),
        CityscapesClass('bicycle',              33, 18, 'vehicle', 7, True, False, (100, 230, 245)),
        CityscapesClass('license plate',        -1, 255, 'vehicle', 7, False, True, (0, 0, 255)),
    ]

更改完成后,在DeepLabV3Plus-Pytorch-master中训练,即可得到训练后的新结果:

相关推荐
一个java开发2 分钟前
mcp demo 智能天气服务:经纬度预报与城市警报
人工智能
阿里云大数据AI技术4 分钟前
OmniThoughtV:面向多模态深度思考的高质量数据蒸馏
人工智能
jkyy20148 分钟前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
hy156878615 分钟前
coze编程-工作流-起起起---废(一句话生成工作流)
人工智能·coze·自动编程
brave and determined18 分钟前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
Fuly102420 分钟前
MCP协议的简介和简单实现
人工智能·langchain
焦耳加热32 分钟前
湖南大学/香港城市大学《ACS Catalysis》突破:微波热冲击构筑异质结,尿素电氧化性能跃升
人工智能·科技·能源·制造·材料工程
这张生成的图像能检测吗41 分钟前
(论文速读)基于迁移学习的大型复杂结构冲击监测
人工智能·数学建模·迁移学习·故障诊断·结构健康监测·传感器应用·加权质心算法
liwulin050643 分钟前
【PYTHON-YOLOV8N】关于YOLO的推理训练图片的尺寸
开发语言·python·yolo
源于花海1 小时前
迁移学习的第一类方法:数据分布自适应(1)——边缘分布自适应
人工智能·机器学习·迁移学习·数据分布自适应