机器学习的精髓-梯度下降算法

  • [1. 梯度下降算法](#1. 梯度下降算法)
  • [2. 梯度下降求解](#2. 梯度下降求解)
  • [3. 总结](#3. 总结)

1. 梯度下降算法

梯度下降算法是一种优化算法,用于最小化函数的数值方法。它通过沿着函数梯度的反方向来更新参数,以逐步减小函数值。这一过程重复进行直到达到收敛条件。梯度下降算法有多种变体,包括批量梯度下降、随机梯度下降和小批量梯度下降。这些变体在处理大规模数据和优化不同类型的函数时具有不同的优势。

2. 梯度下降求解

下面用一个例子来说明,使用梯度下降求极值的过程。

求y= x 2 x^2 x2 * sin(x)函数取得极小值时x的值。
梯度下降就是x当前值-y在x处的导数,再进行不断的迭代

y' = 2x*sin(x) + x 2 x^2 x2*cos(x) (y在x处的导数)

梯度下降x' = x - y'

为了使梯度变化不至于太快,还要再y'上乘以一个learning rate即学习率

那就变成了x' = x - 0.005 * y',如下图:

learning rate = 0.5

x' = x - 0.5 * y'

当learning rate比较大时,x'变化的步长比较大,会导致它在最优解处有较大范围的波动,因此设置合适的learning rate是比较重要的,初学者一般设置learning rate=0.001,复杂的视具体情况进行调整。

3. 总结

个人理解梯度下降就是求极小值的过程,而在机器学习中就是使用梯度下降算法来求loss的最小值的,因此deep learning又被某些专家称之为Gradient programing,因此说梯度下降算法是机器学习的精髓那就一点不为过了。

相关推荐
Hcoco_me11 分钟前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
hkNaruto21 分钟前
【AI】AI学习笔记:LangGraph入门 三大典型应用场景与代码示例及MCP、A2A与LangGraph核心对比
人工智能·笔记·学习
向量引擎小橙22 分钟前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错30 分钟前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
杜子不疼.33 分钟前
【AI】基于GLM-4_7与数字人SDK的政务大厅智能指引系统实践
人工智能·microsoft·政务
core5121 小时前
SGD 算法详解:蒙眼下山的寻宝者
人工智能·算法·矩阵分解·sgd·目标函数
阿湯哥1 小时前
Spring AI Alibaba 实现 Workflow 全指南
java·人工智能·spring
Tezign_space1 小时前
Agent Skills 详解:5大核心能力架构与AI Agent落地实践
人工智能·架构·生成式ai·ai agent·上下文工程·skills·agent skills
m0_466525291 小时前
东软添翼AI 2.0获评医疗健康标杆AI Agent TOP10
大数据·人工智能
Ka1Yan1 小时前
[链表] - 代码随想录 707. 设计链表
数据结构·算法·链表