机器学习的精髓-梯度下降算法

  • [1. 梯度下降算法](#1. 梯度下降算法)
  • [2. 梯度下降求解](#2. 梯度下降求解)
  • [3. 总结](#3. 总结)

1. 梯度下降算法

梯度下降算法是一种优化算法,用于最小化函数的数值方法。它通过沿着函数梯度的反方向来更新参数,以逐步减小函数值。这一过程重复进行直到达到收敛条件。梯度下降算法有多种变体,包括批量梯度下降、随机梯度下降和小批量梯度下降。这些变体在处理大规模数据和优化不同类型的函数时具有不同的优势。

2. 梯度下降求解

下面用一个例子来说明,使用梯度下降求极值的过程。

求y= x 2 x^2 x2 * sin(x)函数取得极小值时x的值。
梯度下降就是x当前值-y在x处的导数,再进行不断的迭代

y' = 2x*sin(x) + x 2 x^2 x2*cos(x) (y在x处的导数)

梯度下降x' = x - y'

为了使梯度变化不至于太快,还要再y'上乘以一个learning rate即学习率

那就变成了x' = x - 0.005 * y',如下图:

learning rate = 0.5

x' = x - 0.5 * y'

当learning rate比较大时,x'变化的步长比较大,会导致它在最优解处有较大范围的波动,因此设置合适的learning rate是比较重要的,初学者一般设置learning rate=0.001,复杂的视具体情况进行调整。

3. 总结

个人理解梯度下降就是求极小值的过程,而在机器学习中就是使用梯度下降算法来求loss的最小值的,因此deep learning又被某些专家称之为Gradient programing,因此说梯度下降算法是机器学习的精髓那就一点不为过了。

相关推荐
脑海科技实验室7 分钟前
Nature子刊:新研究!人工智能提供更清晰的功能MRI脑数据
人工智能·fmri
qyr678923 分钟前
便携式太阳能折叠板市场白皮书与未来趋势展望
大数据·人工智能·物联网·市场分析·市场报告·便携式太阳能折叠板·太阳能折叠板
yunhuibin36 分钟前
AlexNet网络学习
人工智能·python·深度学习·神经网络
算法黑哥44 分钟前
Sharpness-Aware Minimization (SAM,锐度感知最小化)是让损失曲面变平坦,还是引导参数至平坦区域
深度学习·神经网络·机器学习
艾醒1 小时前
打破信息差——2026年2月19日AI热点新闻速览
算法
肾透侧视攻城狮1 小时前
《从fit()到分布式训练:深度解锁TensorFlow模型训练全栈技能》
人工智能·深度学习·tensorflow 模型训练·模型训练中的fit方法·自定义训练循环·回调函数使用·混合精度/分布式训练
索木木1 小时前
大模型训练CP切分(与TP、SP结合)
人工智能·深度学习·机器学习·大模型·训练·cp·切分
DevilSeagull2 小时前
C语言: 动态内存管理
人工智能·语言模型·自然语言处理
破晓之翼2 小时前
从第一性原理和工程控制论角度企业去思考AI开发避免完美主义陷阱
人工智能
njsgcs2 小时前
屏幕元素定位(Grounding) ollama两个模型
人工智能