CIFAR-10数据集详析:使用卷积神经网络训练图像分类模型

1.数据集介绍

CIFAR-10 数据集由 10 个类的 60000 张 32x32 彩色图像组成,每类 6000 张图像。有 50000 张训练图像和 10000 张测试图像。

数据集分为5个训练批次和1个测试批次,每个批次有10000张图像。测试批次正好包含从每个类中随机选择的 1000 张图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次正好包含来自每个类的 5000 张图像。

总结:

Size(大小): 32×32 RGB图像 ,数据集本身是 BGR 通道
Num(数量): 训练集 50000 和 测试集 10000,一共60000张图片
Classes(十种类别): plane(飞机), car(汽车),bird(鸟),cat(猫),deer(鹿),dog(狗),frog(蛙类),horse(马),ship(船),truck(卡车)

下载链接

来自博主(Dream是个帅哥)的分享:

链接: https://pan.baidu.com/s/1gKazlkk108V_1nrc68VoSQ 提取码: 0213

数据集文件夹

CIFAR-100数据集(拓展)

这个数据集与CIFAR-10类似,只不过它有100个类,每个类包含600个图像。每个类有500个训练图像和100个测试图像。CIFAR-100中的100个子类被分为20个大类。每个图像都有一个"fine"标签(它所属的子类)和一个"coarse"标签(它所属的大类)。

CIFAR-10数据集与MNIST数据集对比

  • 维度不同:CIFAR-10数据集有4个维度,MNIST数据集有3个维度(CIRAR-10的四维: 一次的样本数量, 图片高, 图片宽, 图通道数 -> N H W C;MNIST的三维: 一次的样本数量, 图片高, 图片宽 -> N H W)
  • 图像类型不同:CIFAR-10数据集是RGB图像(有三个通道),MNIST数据集是灰度图像,这也是为什么CIFAR-10数据集比MNIST数据集多出一个维度的原因。
  • 图像内容不同:CIFAR-10数据集展示的是各种不同的物体(猫、狗、飞机、汽车...),MNIST数据集展示的是不同人的手写0~9数字。

2.数据集读取

读取数据集

选取data_batch_1可视化其中一张图:

python 复制代码
def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict
dict = unpickle('D:\PycharmProjects\model-fuxian\CIFAR\cifar-10-batches-py\data_batch_1')
print(dict)

输出结果:

一批次的数据集中有4个字典键,我们需要用到的就是 数据标签 和 数据内容(10000×32×32×3,10000张32×32大小为rgb三通道的图片)

输出的是一个字典:

{
b'batch_label': b'training batch 1 of 5',
b'labels': [6, 9 ... 1,5],
b'data': array([[ 59, 43, ..., 84, 72],...[ 62, 61, 60, ..., 130, 130, 131]], dtype=uint8),
b'filenames': [b'leptodactylus_pentadactylus_s_000004.png',...b'cur_s_000170.png']

}

其中,各个代表的意思如下:
b'batch_label' : 所属文件集
b'labels' : 图片标签
b'data' :图片数据
b'filename' :图片名称

读取类型

python 复制代码
print(type(dict[b'batch_label']))
print(type(dict[b'labels']))
print(type(dict[b'data']))
print(type(dict[b'filenames']))

输出结果:

<class 'bytes'>

<class 'list'>

<class 'numpy.ndarray'>

<class 'list'>

读取图片

python 复制代码
img = dict[b'data']
print(img.shape)

输出结果:(10000, 3072),其中 3072 = 32 * 32 * 3 (图片 size)

3.数据集调用

TensorFlow 调用

python 复制代码
from tensorflow.keras.datasets import cifar10

(x_train,y_train), (x_test, y_test) = cifar10.load_data()

本地调用

python 复制代码
def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict
dict = unpickle('D:\PycharmProjects\model-fuxian\CIFAR\cifar-10-batches-py\data_batch_1')

4.卷积神经网络训练

此处参考:传送门

1.指定GPU

python 复制代码
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0],True)
#初始化
plt.rcParams['font.sans-serif'] = ['SimHei']

2.加载数据

python 复制代码
cifar10 = tf.keras.datasets.cifar10
(train_x,train_y),(test_x,test_y) = cifar10.load_data()
print('\n train_x:%s, train_y:%s, test_x:%s, test_y:%s'%(train_x.shape,train_y.shape,test_x.shape,test_y.shape))

3.数据预处理

python 复制代码
X_train,X_test = tf.cast(train_x/255.0,tf.float32),tf.cast(test_x/255.0,tf.float32)     #归一化
y_train,y_test = tf.cast(train_y,tf.int16),tf.cast(test_y,tf.int16)

4.建立模型

adam算法参数采用keras默认的公开参数,损失函数采用稀疏交叉熵损失函数,准确率采用稀疏分类准确率函数

python 复制代码
model = tf.keras.Sequential()
##特征提取阶段
#第一层
model.add(tf.keras.layers.Conv2D(16,kernel_size=(3,3),padding='same',activation=tf.nn.relu,data_format='channels_last',input_shape=X_train.shape[1:]))  #卷积层,16个卷积核,大小(3,3),保持原图像大小,relu激活函数,输入形状(28,28,1)
model.add(tf.keras.layers.Conv2D(16,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2,2)))   #池化层,最大值池化,卷积核(2,2)
#第二层
model.add(tf.keras.layers.Conv2D(32,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.Conv2D(32,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2,2)))
##分类识别阶段
#第三层
model.add(tf.keras.layers.Flatten())    #改变输入形状
#第四层
model.add(tf.keras.layers.Dense(128,activation='relu'))     #全连接网络层,128个神经元,relu激活函数
model.add(tf.keras.layers.Dense(10,activation='softmax'))   #输出层,10个节点
print(model.summary())      #查看网络结构和参数信息

#配置模型训练方法
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['sparse_categorical_accuracy'])

5.训练模型

批量训练大小为64,迭代5次,测试集比例0.2(48000条训练集数据,12000条测试集数据)

python 复制代码
history = model.fit(X_train,y_train,batch_size=64,epochs=5,validation_split=0.2)

6.评估模型

python 复制代码
model.evaluate(X_test,y_test,verbose=2)     #每次迭代输出一条记录,来评价该模型是否有比较好的泛化能力

#保存整个模型
model.save('CIFAR10_CNN_weights.h5')

7.结果可视化

python 复制代码
print(history.history)
loss = history.history['loss']          #训练集损失
val_loss = history.history['val_loss']  #测试集损失
acc = history.history['sparse_categorical_accuracy']            #训练集准确率
val_acc = history.history['val_sparse_categorical_accuracy']    #测试集准确率

plt.figure(figsize=(10,3))

plt.subplot(121)
plt.plot(loss,color='b',label='train')
plt.plot(val_loss,color='r',label='test')
plt.ylabel('loss')
plt.legend()

plt.subplot(122)
plt.plot(acc,color='b',label='train')
plt.plot(val_acc,color='r',label='test')
plt.ylabel('Accuracy')
plt.legend()

8.使用模型

python 复制代码
plt.figure()
for i in range(10):
    num = np.random.randint(1,10000)
    plt.subplot(2,5,i+1)
    plt.axis('off')
    plt.imshow(test_x[num],cmap='gray')
    demo = tf.reshape(X_test[num],(1,32,32,3))
    y_pred = np.argmax(model.predict(demo))
    plt.title('标签值:'+str(test_y[num])+'\n预测值:'+str(y_pred))
plt.show()

输出结果:

上面的内容分别是训练样本的损失函数值和准确率、测试样本的损失函数值和准确率,可以看到它每次训练迭代时损失函数和准确率的变化,从最后一次迭代结果上看,测试样本的损失函数值达到0.9123,准确率仅达到0.6839。

这个结果并不是很好,我尝试过增加迭代次数,发现训练样本的损失函数值可以达到0.04,准确率达到0.98;但实际上训练模型却产生了越来越大的泛化误差,这就是训练过度的现象,经过尝试泛化能力最好时是在迭代第5次的状态,故只能选择迭代5次。

训练好的模型文件------直接用

CIFAR10数据集介绍,并使用卷积神经网络训练图像分类模型------附完整代码训练好的模型文件 ------直接用:https://download.csdn.net/download/weixin_51390582/88788820

相关推荐
qzhqbb1 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨2 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041082 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌3 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭3 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246664 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k4 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫4 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班4 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型