Spark累加器LongAccumulator

1.Accumulator是由Driver端总体进行维护的,读取当前值也是在Driver端,各个Task在其所在的Executor上也维护了Accumulator变量,但只是局部性累加操作,运行完成后会到Driver端去合并累加结果。Accumulator有两个性质:

1、只会累加,合并即累加;

2、不改变Spark作业懒执行的特点,即没有action操作触发job的情况下累加器的值有可能是初始值。

Scala 复制代码
object AccumulatorTest {

  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName("test003").setMaster("local")
    val sc = new SparkContext(conf)
    sc.setLogLevel("ERROR")

    println("***********************************")
    // 使用scala集合完成累加
    var count1:Int = 0;
    var data = Seq(1,2,3,4)
    data.map(x=> count1 +=x)
    println("scala集合进行累加:" + count1)
    println("***********************************")

// 使用RDD累加,但是count2打印结果为0
// 使用foreach传递的是函数,driver在把变量发送到work时,work中Executor都有一份count2变量副本,
// 最后执行计算时每个Executor的count2会加上自己的x,与dirver短中定义的count2没有关系,所以打印结果是0,
    var count2:Int = 0
    val dataRDD: RDD[Int] = sc.parallelize(data)
    dataRDD.foreach(x=> count2 +=x)
    println(count2)

    println("**************使用累加器*********************")
    val acc: LongAccumulator = sc.longAccumulator("accumulatorTest")
    dataRDD.foreach(x=>acc.add(x))
    println("计算元素累积和:" + acc.value)
    println("统计元素个数:" + acc.count)
    println("统计元素平均值:" + acc.avg)
    println("统计元素总和:" + acc.sum)
  }
}
相关推荐
喂完待续3 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB3 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
写bug写bug3 小时前
分布式锁的使用场景和常见实现(下)
分布式·后端·面试
最初的↘那颗心4 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05235 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝12 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续16 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交16 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特1 天前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
yh云想1 天前
《从入门到精通:Kafka核心原理全解析》
分布式·kafka