Spark累加器LongAccumulator

1.Accumulator是由Driver端总体进行维护的,读取当前值也是在Driver端,各个Task在其所在的Executor上也维护了Accumulator变量,但只是局部性累加操作,运行完成后会到Driver端去合并累加结果。Accumulator有两个性质:

1、只会累加,合并即累加;

2、不改变Spark作业懒执行的特点,即没有action操作触发job的情况下累加器的值有可能是初始值。

Scala 复制代码
object AccumulatorTest {

  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName("test003").setMaster("local")
    val sc = new SparkContext(conf)
    sc.setLogLevel("ERROR")

    println("***********************************")
    // 使用scala集合完成累加
    var count1:Int = 0;
    var data = Seq(1,2,3,4)
    data.map(x=> count1 +=x)
    println("scala集合进行累加:" + count1)
    println("***********************************")

// 使用RDD累加,但是count2打印结果为0
// 使用foreach传递的是函数,driver在把变量发送到work时,work中Executor都有一份count2变量副本,
// 最后执行计算时每个Executor的count2会加上自己的x,与dirver短中定义的count2没有关系,所以打印结果是0,
    var count2:Int = 0
    val dataRDD: RDD[Int] = sc.parallelize(data)
    dataRDD.foreach(x=> count2 +=x)
    println(count2)

    println("**************使用累加器*********************")
    val acc: LongAccumulator = sc.longAccumulator("accumulatorTest")
    dataRDD.foreach(x=>acc.add(x))
    println("计算元素累积和:" + acc.value)
    println("统计元素个数:" + acc.count)
    println("统计元素平均值:" + acc.avg)
    println("统计元素总和:" + acc.sum)
  }
}
相关推荐
ha_lydms6 小时前
DataWorks离线同步 OSS文件
大数据·阿里云·oss·dataworks·maxcompute·数据同步·离线计算
山峰哥6 小时前
SQL优化全解析:从索引策略到查询性能飞跃
大数据·数据库·sql·编辑器·深度优先
CTO Plus技术服务中6 小时前
Flink运维与开发教程
大数据·运维·flink
CTO Plus技术服务中6 小时前
分布式存储HBase开发与运维教程
运维·分布式·hbase
EveryPossible6 小时前
大数据模型练习4
大数据
VALENIAN瓦伦尼安教学设备7 小时前
镭射对心仪在联轴器找正作用
大数据·数据库·人工智能·嵌入式硬件
2601_949543017 小时前
Flutter for OpenHarmony垃圾分类指南App实战:政策法规实现
大数据·flutter
春日见7 小时前
Autoware使用教程
大数据·人工智能·深度学习·elasticsearch·搜索引擎·docker·容器
新缸中之脑7 小时前
在OpenClaw中构建专业AI角色
大数据·人工智能
飞乐鸟8 小时前
Github 16.8k Star!推荐一款开源的高性能分布式对象存储系统!
分布式·开源·github