Spark累加器LongAccumulator

1.Accumulator是由Driver端总体进行维护的,读取当前值也是在Driver端,各个Task在其所在的Executor上也维护了Accumulator变量,但只是局部性累加操作,运行完成后会到Driver端去合并累加结果。Accumulator有两个性质:

1、只会累加,合并即累加;

2、不改变Spark作业懒执行的特点,即没有action操作触发job的情况下累加器的值有可能是初始值。

Scala 复制代码
object AccumulatorTest {

  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName("test003").setMaster("local")
    val sc = new SparkContext(conf)
    sc.setLogLevel("ERROR")

    println("***********************************")
    // 使用scala集合完成累加
    var count1:Int = 0;
    var data = Seq(1,2,3,4)
    data.map(x=> count1 +=x)
    println("scala集合进行累加:" + count1)
    println("***********************************")

// 使用RDD累加,但是count2打印结果为0
// 使用foreach传递的是函数,driver在把变量发送到work时,work中Executor都有一份count2变量副本,
// 最后执行计算时每个Executor的count2会加上自己的x,与dirver短中定义的count2没有关系,所以打印结果是0,
    var count2:Int = 0
    val dataRDD: RDD[Int] = sc.parallelize(data)
    dataRDD.foreach(x=> count2 +=x)
    println(count2)

    println("**************使用累加器*********************")
    val acc: LongAccumulator = sc.longAccumulator("accumulatorTest")
    dataRDD.foreach(x=>acc.add(x))
    println("计算元素累积和:" + acc.value)
    println("统计元素个数:" + acc.count)
    println("统计元素平均值:" + acc.avg)
    println("统计元素总和:" + acc.sum)
  }
}
相关推荐
毕设源码-钟学长2 小时前
【开题答辩全过程】以 分布式菌菇销售系统为例,包含答辩的问题和答案
分布式
TTBIGDATA5 小时前
【Ambari开启Kerberos】KERBEROS SERVICE CHECK 报错
大数据·运维·hadoop·ambari·cdh·bigtop·ttbigdata
开利网络5 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师6 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
Hello.Reader6 小时前
用 CdcUp CLI 一键搭好 Flink CDC 演练环境
大数据·flink
熙梦数字化7 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车
Hello.Reader7 小时前
Flink CDC「Data Pipeline」定义与参数速查
大数据·flink
千禧皓月9 小时前
【C++】基于C++的RPC分布式网络通信框架(二)
c++·分布式·rpc
森语林溪9 小时前
大数据环境搭建从零开始(十四)CentOS 7 系统更新源更换详解:阿里云镜像源配置完整指南
大数据·linux·运维·阿里云·centos
杂家11 小时前
Zookeeper完全分布式部署(超详细)
大数据·分布式·zookeeper