多智能体强化学习--MAPPO(pytorch代码详解)

标题

代码详解

代码链接(点击跳转)

Actor和Critic网络的设置

  • 基本设置:3个智能体、每个智能体观测空间18维。
  • Actor网络:实例化一个actor对象,input-size是18
  • Critic网络:实例化一个Critic对象,input-size是18x3=54
  • 在choose_action调用actor网络的时候,传入的直接是三个智能体的参数,tensor_size=[3,18];也就是说,智能体之间是共用一套参数的,也就是参数共享;(三个18维向量之间是相互独立的,改变其中一个向量的值,经过神经网络后,只有他自己的输出值改变了,而其他两个向量仍然是原来的大小);
  • 在训练时,可以认为只有一个Critic网络,因此这叫做集中式训练;
  • 值得注意的是,Critic网络的实际输入的向量的值是[3,54]!!而这三个向量是一模一样的。
  • 关于reward,代码给出的实例是所有智能体共享同一奖励函数,因此将策略梯度算法扩展到多智能体场景下的最简单的方式就是每个智能体共用同一个全局 critic 函数。(但好像值分解的方法更合理一点)

2.box类

  • box类对应于多维连续空间
  • Box空间可以定义多维空间,每一个维度可以用一个最低值和最大值来约束
  • 定义一个多维的Box空间需要知道每一个维度的最小最大值,当然也要知道维数。

    作者在文献附录中有谈到说如果智能体是同种类的就采用相同的网络参数,对于每个智能体内部也可以采用各自的actor和critic网络,但是作者为了符号的便利性,直接就用的一个网络参数来表示)。
相关推荐
麻辣清汤1 分钟前
结合BI多维度异常分析(日期-> 商家/渠道->日期(商家/渠道))
数据库·python·sql·finebi
云边云科技5 分钟前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售
钢铁男儿11 分钟前
Python 正则表达式(正则表达式和Python 语言)
python·mysql·正则表达式
audyxiao00115 分钟前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
钢铁男儿20 分钟前
Python 正则表达式实战:解析系统登录与进程信息
开发语言·python·正则表达式
伊织code22 分钟前
PyTorch API 6
pytorch·api·ddp
Monkey的自我迭代32 分钟前
机器学习总复习
人工智能·机器学习
大千AI助手32 分钟前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
用户51914958484541 分钟前
耶稣蓝队集体防护Bash脚本:多模块协同防御实战
人工智能·aigc
前端小趴菜051 小时前
python - range
python