RBE306TC Computer Vision Systems

RBE306TC Computer Vision Systems

Assignment

Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in

Python Coding Platform for example: imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.

Some other Python built-in functions, or functions in Scipy package may also be used. Please refer to online resources.

Hint: read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.

Exercise 1 (20%)

In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) with the following tasks.

Let's regard this reference image Lenna as IM.

• (a). Add Gaussian white noise with 0 mean and variance 10 to the image IM and display the noisy image. We name it as IM_WN. Please write one function to generate this image instead of calling Matlab function directly (4%).

• (b). Add salt & pepper noise with noise density 10% to the image IM and display the noisy image.

We name it as IM_SP. Please write one function to generate this image instead of calling

Matlab function directly (4%).

• (c). Display the histograms of all the previous images and compare them with the histogram of the reference image, comments and briefly explain your finding (4%).

• (d). Use the command histeq to enhance the image constrast

(lenna512_low_dynamic_range.bmp) and display the enhanced image (4%).

• (e). Moreover, display the histograms of both original image and enhanced image, and explain your finding in the assignment (4%).

Exercise 2 (25%)

Recall salt & pepper images generated in Task 1 IM_SP based on the IM.

• (a). Apply the median filter with a 3 × 3 window and a 5 × 5 window on the image IM_SPrespectively. Display and evaluate the PSNR of the obtained images. For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved (8%).

• (b). Use the average filter (mean filter) 3 × 3 to filter the image IM_SP. Compute the PSNR and display the filtered image (8%).

• (c). As you experimented with the mean and median algorithms what different property did you notice? Was the average or median filter better and why (9%)?

Exercise 3 (55%)

In this exercise, you will be asked to build a VGG-16 and VGG-19 (see the following architecture) to train a classifier on cifar10 dataset. based on the python + PyTorch codes implemented in Lab 4 for LeNet.

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class.

相关推荐
天涯海风1 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs2 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java2 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV3 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br3 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����4 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine4 小时前
机器学习——数据清洗
人工智能·机器学习
小猿姐5 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生5 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
吱吱企业安全通讯软件5 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯