RBE306TC Computer Vision Systems

RBE306TC Computer Vision Systems

Assignment

Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in

Python Coding Platform for example: imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.

Some other Python built-in functions, or functions in Scipy package may also be used. Please refer to online resources.

Hint: read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.

Exercise 1 (20%)

In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) with the following tasks.

Let's regard this reference image Lenna as IM.

• (a). Add Gaussian white noise with 0 mean and variance 10 to the image IM and display the noisy image. We name it as IM_WN. Please write one function to generate this image instead of calling Matlab function directly (4%).

• (b). Add salt & pepper noise with noise density 10% to the image IM and display the noisy image.

We name it as IM_SP. Please write one function to generate this image instead of calling

Matlab function directly (4%).

• (c). Display the histograms of all the previous images and compare them with the histogram of the reference image, comments and briefly explain your finding (4%).

• (d). Use the command histeq to enhance the image constrast

(lenna512_low_dynamic_range.bmp) and display the enhanced image (4%).

• (e). Moreover, display the histograms of both original image and enhanced image, and explain your finding in the assignment (4%).

Exercise 2 (25%)

Recall salt & pepper images generated in Task 1 IM_SP based on the IM.

• (a). Apply the median filter with a 3 × 3 window and a 5 × 5 window on the image IM_SPrespectively. Display and evaluate the PSNR of the obtained images. For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved (8%).

• (b). Use the average filter (mean filter) 3 × 3 to filter the image IM_SP. Compute the PSNR and display the filtered image (8%).

• (c). As you experimented with the mean and median algorithms what different property did you notice? Was the average or median filter better and why (9%)?

Exercise 3 (55%)

In this exercise, you will be asked to build a VGG-16 and VGG-19 (see the following architecture) to train a classifier on cifar10 dataset. based on the python + PyTorch codes implemented in Lab 4 for LeNet.

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class.

相关推荐
心态与习惯2 小时前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
Coder_Boy_3 小时前
基于SpringAI的在线考试系统-0到1全流程研发:DDD、TDD与CICD协同实践
java·人工智能·spring boot·架构·ddd·tdd
北京耐用通信3 小时前
耐达讯自动化Profibus总线光纤中继器:光伏逆变器通讯的“稳定纽带”
人工智能·物联网·网络协议·自动化·信息与通信
啊阿狸不会拉杆3 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
AI即插即用3 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
数说星榆1813 小时前
脑启发计算与类神经形态芯片的协同
人工智能
m0_650108243 小时前
AD-GS:面向自监督自动驾驶场景的目标感知 B 样条高斯 splatting 技术
论文阅读·人工智能·自动驾驶·基于高斯泼溅的自监督框架·高质量场景渲染
王锋(oxwangfeng)3 小时前
自动驾驶领域OCC标注
人工智能·机器学习·自动驾驶
cxr8283 小时前
从NP-hard到梯度下降:神经-符号架构如何破解因果发现的“计算魔咒”
人工智能·重构·认知框架
老陈聊架构3 小时前
『AI辅助Skill』掌握三大AI设计Skill:前端独立完成产品设计全流程
前端·人工智能·claude·skill