RBE306TC Computer Vision Systems

RBE306TC Computer Vision Systems

Assignment

Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in

Python Coding Platform for example: imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.

Some other Python built-in functions, or functions in Scipy package may also be used. Please refer to online resources.

Hint: read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.

Exercise 1 (20%)

In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) with the following tasks.

Let's regard this reference image Lenna as IM.

• (a). Add Gaussian white noise with 0 mean and variance 10 to the image IM and display the noisy image. We name it as IM_WN. Please write one function to generate this image instead of calling Matlab function directly (4%).

• (b). Add salt & pepper noise with noise density 10% to the image IM and display the noisy image.

We name it as IM_SP. Please write one function to generate this image instead of calling

Matlab function directly (4%).

• (c). Display the histograms of all the previous images and compare them with the histogram of the reference image, comments and briefly explain your finding (4%).

• (d). Use the command histeq to enhance the image constrast

(lenna512_low_dynamic_range.bmp) and display the enhanced image (4%).

• (e). Moreover, display the histograms of both original image and enhanced image, and explain your finding in the assignment (4%).

Exercise 2 (25%)

Recall salt & pepper images generated in Task 1 IM_SP based on the IM.

• (a). Apply the median filter with a 3 × 3 window and a 5 × 5 window on the image IM_SPrespectively. Display and evaluate the PSNR of the obtained images. For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved (8%).

• (b). Use the average filter (mean filter) 3 × 3 to filter the image IM_SP. Compute the PSNR and display the filtered image (8%).

• (c). As you experimented with the mean and median algorithms what different property did you notice? Was the average or median filter better and why (9%)?

Exercise 3 (55%)

In this exercise, you will be asked to build a VGG-16 and VGG-19 (see the following architecture) to train a classifier on cifar10 dataset. based on the python + PyTorch codes implemented in Lab 4 for LeNet.

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class.

相关推荐
用户51914958484514 分钟前
Braintree iOS Drop-in SDK - 一站式支付解决方案
人工智能·aigc
科技小郑17 分钟前
吱吱企业即时通讯以安全为基,重塑安全办公新体验
大数据·网络·人工智能·安全·信息与通信·吱吱企业通讯
就叫飞六吧19 分钟前
生产环境禁用AI框架工具回调:安全风险与最佳实践
人工智能·安全
胡乱编胡乱赢36 分钟前
关于在pycharm终端连接服务器
人工智能·深度学习·pycharm·终端连接服务器
聚客AI44 分钟前
⚠️Embedding选型指南:五步搞定数据规模、延迟与精度平衡!
人工智能·llm·掘金·日新计划
h_k100861 小时前
Manus AI与多语言手写识别
人工智能
就是一顿骚操作1 小时前
mcp解读——概述及整体架构
人工智能·大模型
程序猿阿伟1 小时前
《云原生边缘与AI训练场景:2类高频隐蔽Bug的深度排查与架构修复》
人工智能·云原生·bug
l1t1 小时前
利用美团龙猫添加xlsx的sheet.xml读取sharedStrings.xml中共享字符串输出到csv功能
xml·c语言·数据结构·人工智能·算法·解析器
IT_陈寒1 小时前
Python 3.12 的这5个新特性,让我的代码性能提升了40%!
前端·人工智能·后端