RBE306TC Computer Vision Systems

RBE306TC Computer Vision Systems

Assignment

Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in

Python Coding Platform for example: imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.

Some other Python built-in functions, or functions in Scipy package may also be used. Please refer to online resources.

Hint: read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.

Exercise 1 (20%)

In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) with the following tasks.

Let's regard this reference image Lenna as IM.

• (a). Add Gaussian white noise with 0 mean and variance 10 to the image IM and display the noisy image. We name it as IM_WN. Please write one function to generate this image instead of calling Matlab function directly (4%).

• (b). Add salt & pepper noise with noise density 10% to the image IM and display the noisy image.

We name it as IM_SP. Please write one function to generate this image instead of calling

Matlab function directly (4%).

• (c). Display the histograms of all the previous images and compare them with the histogram of the reference image, comments and briefly explain your finding (4%).

• (d). Use the command histeq to enhance the image constrast

(lenna512_low_dynamic_range.bmp) and display the enhanced image (4%).

• (e). Moreover, display the histograms of both original image and enhanced image, and explain your finding in the assignment (4%).

Exercise 2 (25%)

Recall salt & pepper images generated in Task 1 IM_SP based on the IM.

• (a). Apply the median filter with a 3 × 3 window and a 5 × 5 window on the image IM_SPrespectively. Display and evaluate the PSNR of the obtained images. For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved (8%).

• (b). Use the average filter (mean filter) 3 × 3 to filter the image IM_SP. Compute the PSNR and display the filtered image (8%).

• (c). As you experimented with the mean and median algorithms what different property did you notice? Was the average or median filter better and why (9%)?

Exercise 3 (55%)

In this exercise, you will be asked to build a VGG-16 and VGG-19 (see the following architecture) to train a classifier on cifar10 dataset. based on the python + PyTorch codes implemented in Lab 4 for LeNet.

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class.

相关推荐
稳石氢能35 分钟前
稳石氢能董事长贾力出席2025高工氢电年会,呼吁制氢产业生态建设获广泛赞同。
人工智能
2301_8002561142 分钟前
8.2 空间查询基本组件 核心知识点总结
数据库·人工智能·算法
Aspect of twilight1 小时前
PyTorch DDP分布式训练Pytorch代码讲解
人工智能·pytorch·python
用户5191495848451 小时前
滥用ESC10:通过注册表配置不当实现权限提升的ADCS攻击分析
人工智能·aigc
黎茗Dawn1 小时前
DDPM-KL 散度与 L2 损失
人工智能·算法·机器学习
玖日大大1 小时前
融合浪潮:从 “国产替代” 到 “范式创新” 的必然跃迁
人工智能
棒棒的皮皮1 小时前
【OpenCV】Python图像处理之数字水印
图像处理·python·opencv·计算机视觉
tomeasure1 小时前
INTERNAL ASSERT FAILED at “/pytorch/c10/cuda/CUDACachingAllocator.cpp“:983
人工智能·pytorch·python·nvidia
AI营销快线1 小时前
AI营销下半场:B2B选型指南
大数据·人工智能
小马爱打代码1 小时前
Spring AI:文生图:调用通义万相 AI 大模型
java·人工智能·spring