RBE306TC Computer Vision Systems

RBE306TC Computer Vision Systems

Assignment

Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in

Python Coding Platform for example: imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.

Some other Python built-in functions, or functions in Scipy package may also be used. Please refer to online resources.

Hint: read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.

Exercise 1 (20%)

In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) with the following tasks.

Let's regard this reference image Lenna as IM.

• (a). Add Gaussian white noise with 0 mean and variance 10 to the image IM and display the noisy image. We name it as IM_WN. Please write one function to generate this image instead of calling Matlab function directly (4%).

• (b). Add salt & pepper noise with noise density 10% to the image IM and display the noisy image.

We name it as IM_SP. Please write one function to generate this image instead of calling

Matlab function directly (4%).

• (c). Display the histograms of all the previous images and compare them with the histogram of the reference image, comments and briefly explain your finding (4%).

• (d). Use the command histeq to enhance the image constrast

(lenna512_low_dynamic_range.bmp) and display the enhanced image (4%).

• (e). Moreover, display the histograms of both original image and enhanced image, and explain your finding in the assignment (4%).

Exercise 2 (25%)

Recall salt & pepper images generated in Task 1 IM_SP based on the IM.

• (a). Apply the median filter with a 3 × 3 window and a 5 × 5 window on the image IM_SPrespectively. Display and evaluate the PSNR of the obtained images. For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved (8%).

• (b). Use the average filter (mean filter) 3 × 3 to filter the image IM_SP. Compute the PSNR and display the filtered image (8%).

• (c). As you experimented with the mean and median algorithms what different property did you notice? Was the average or median filter better and why (9%)?

Exercise 3 (55%)

In this exercise, you will be asked to build a VGG-16 and VGG-19 (see the following architecture) to train a classifier on cifar10 dataset. based on the python + PyTorch codes implemented in Lab 4 for LeNet.

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class.

相关推荐
电棍23313 分钟前
工程记录:使用tello edu无人机进行计算机视觉工作(手势识别,yolo3搭载)
人工智能·计算机视觉·无人机
wan5555cn16 分钟前
国产电脑操作系统与硬盘兼容性现状分析:挑战与前景评估
人工智能·笔记·深度学习·机器学习·电脑·生活
BullSmall1 小时前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
woshihonghonga1 小时前
停止Conda开机自动运行方法
linux·人工智能·conda
海洲探索-Hydrovo3 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
触想工业平板电脑一体机3 小时前
【触想智能】工业安卓一体机在人工智能领域上的市场应用分析
android·人工智能·智能电视
墨染天姬5 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
2401_841495646 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
倔强青铜三7 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三7 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试