Python初学者学习记录——python基础综合案例:数据可视化——地图可视化

一、基础地图使用

1、基础地图演示

2、基础地图演示------视觉映射器

python 复制代码
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts

# 准备地图对象
map = Map()
# 准备数据
data = [
    ("北京市", 99),
    ("上海市", 199),
    ("湖南省", 299),
    ("台湾省", 399),
    ("广东省", 499),
]
# 添加数据
map.add("测试地图", data, "china")
# 设置全局选项
map.set_global_opts(
    visualmap_opts=VisualMapOpts(  # 视觉映像
        is_show=True,
        is_piecewise=True,   # 设置分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FF6666"},
            {"min": 100, "max": 500, "label": "100-500人", "color": "#990033"}
        ]
    )
)
# 绘图
map.render()

生成的地图链接(PC端打开):http://localhost:63342/pythonProject/render.html?_ijt=rkocdgrhhojeq0tqfkouf7hmco&_ij_reload=RELOAD_ON_SAVE

二、全国疫情地图构建

案例效果:

python 复制代码
import json
from pyecharts.charts import Map
from pyecharts.options import TitleOpts, VisualMapOpts

# 读取数据文件
f = open("D:/疫情.txt", "r", encoding="utf-8")
data = f.read()  # 全部数据
# 关闭文件
f.close()
# 取到各省数据
# 将字符串json转化为python的字典
data_dict = json.loads(data)
# 从字典中取出省份的数据
province_data_list = data_dict["areaTree"][0]["children"]
# 组装每个省份和确诊人数为元组,并各个省的数据都封装入列表内
data_list = []   # 绘图需要用的数据列表
for province_data in province_data_list:
    province_name = province_data["name"]                  # 省份名称
    province_confirm = province_data["total"]["confirm"]   # 确诊人数
    data_list.append((province_name, province_confirm))
# 创建地图对象
map = Map()
# 添加数据
map.add("个省份确诊人数", data_list, "china")
# 设置全局配置,定制分段的视觉映像
map.set_global_opts(
    title_opts=TitleOpts(title="全国疫情地图", pos_left="center", pos_bottom="1%"),
    visualmap_opts=VisualMapOpts(
        is_show=True,           # 是否显示
        is_piecewise=True,      # 是否分段
        pieces=[
            {"min": 1, "max": 99, "label": "1-99人", "color": "#CCFFFF"},
            {"min": 100, "max": 999, "label": "100-999人", "color": "#FFFF99"},
            {"min": 1000, "max": 4999, "label": "1000-4999人", "color": "#FF9966"},
            {"min": 5000, "max": 9999, "label": "5000-9999人", "color": "#FF6666"},
            {"min": 10000, "max": 99999, "label": "10000-99999人", "color": "#CC3333"},
            {"min": 100000, "label": "100000+", "color": "#990033"}
        ]
    )
)

# 绘图
map.render("全国疫情地图.html")

生成的地图链接(PC端打开):http://localhost:63342/pythonProject/%E5%85%A8%E5%9B%BD%E7%96%AB%E6%83%85%E5%9C%B0%E5%9B%BE.html?_ijt=2pd19lncoe59qal119povfdrvr&_ij_reload=RELOAD_ON_SAVE

三、河南省疫情地图构建

python 复制代码
import json
from pyecharts.charts import Map
from pyecharts.options import *

# 读取文件
f = open("D:\疫情.txt", "r", encoding="utf-8")
data = f.read()
# 关闭文件
f.close()
# 将json数据转化为python数据
data_dict = json.loads(data)
# 获取陕西省数据
province_shannxi_list = data_dict["areaTree"][0]["children"][15]["children"]
# 准备数据为元组,并放入list
data_list = []
for province_data in province_shannxi_list:
    city_name = province_data["name"]                   # 获取城市名称
    city_confirm = province_data["total"]["confirm"]    # 获取确诊人数
    data_list.append((city_name, city_confirm))         # 放入列表
# 构建地图
map = Map()
# 添加数据
map.add("各城市确诊人数", data_list, "陕西")
# 设置全局配置
map.set_global_opts(
    title_opts=TitleOpts(title="陕西省疫情地图", pos_left="center", pos_bottom="1%"),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 29, "label": "10-29人", "color": "#FFFF99"},
            {"min": 30, "max": 59, "label": "30-59人", "color": "#FF9966"},
            {"min": 60, "max": 89, "label": "60-89人", "color": "#FF6666"},
            {"min": 90, "max": 119, "label": "90-119人", "color": "#CC3333"},
            {"min": 120, "label": "120+", "color": "#990033"}
        ]
    )
)
# 绘图
map.render("陕西省疫情地图.html")
相关推荐
果子⌂6 分钟前
初识 Flask 框架
后端·python·flask
Blossom.11811 分钟前
基于深度学习的智能图像分类系统:从零开始构建
开发语言·人工智能·python·深度学习·神经网络·机器学习·分类
缘友一世13 分钟前
java设计模式[2]之创建型模式
java·开发语言·设计模式
BAGAE34 分钟前
使用 Flutter 在 Windows 平台开发 Android 应用
android·大数据·数据结构·windows·python·flutter
cyc&阿灿1 小时前
Java中extends与implements深度解析:继承与接口实现的本质区别
java·开发语言
HEY_FLYINGPIG2 小时前
Flask应用中处理异步事件(后台线程+事件循环)的方法(2)
后端·python·flask
虾条_花吹雪2 小时前
5、Spring AI(MCPServer+MCPClient+Ollama)开发环境搭建_第一篇
数据库·人工智能·学习·spring·ai
liujing102329293 小时前
Day13_C语言基础&项目实战
c语言·开发语言
周振超的3 小时前
c++编译第三方项目报错# pragma warning( disable: 4273)
开发语言·c++
JH30734 小时前
Java Stream API 在企业开发中的实战心得:高效、优雅的数据处理
java·开发语言·oracle