机器学习系列 16:使用 scikit-learn 的 Pipeline

在机器学习项目中,我们经常需要进行大量的数据预处理步骤,最后用处理干净的数据集来拟合机器学习算法得到一个合适的机器学习模型。

scikit-learn 提供了一个强大的 Pipeline 类来帮助我们将所有的数据预处理步骤和训练模型的步骤串起来。就像流水线一样,前一个步骤处理完的结果输入到下一个步骤,依次处理。

这里我们将使用 UCI 提供的威斯康星洲乳腺癌数据集,下载地址如下:

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

这个数据集一共包含 569 个样本,每个样本有 30 个实数值特征,数据集的前 2 列分别是标识病人的 ID 和肿瘤诊断结果(M 表示恶性,B 表示良性)。让我们首先加载数据集,然后抽取出特征 X 和类别 y,我们还用了 scikit-learn 提供的 LabelEncoder 将字符串表示的样本类别编码成数字表示。

现在我们已经将 M 编码成 1,B 编码成 0。

然后我们将数据集拆分成训练集和测试集,其中训练集占 80%,测试集占 20%。

许多机器学习算法要求输入的特征的取值范围都在同一个范围内,由于这里的数据集中的特征是以不同的度量标准测到的,所以我们需要标准化特征。然后,假设我们还要将这 30 维的高维数据通过 PCA 压缩到 2 维空间。最后我们用数据集拟合逻辑回归算法得到一个二分类模型。

我们可以通过 make_pipeline 函数将中上述步骤中涉及的标准化、PCA 和训练模型串到一个管道(pipeline)中。

make_pipeline 函数可以接收任意数量的 scikit-learn transformer(包含 fit 和 trasnform 方法的对象),最后跟一个 scikit-learn estimator(实现了 fit 和 predict 方法的对象)。

在前面的例子中,StandardScaler() 和 PCA() 就是 transformer,LogisticRegression 就是 estimator。

在我调用 pipe_lr 的 fit 方法时,Pipeline 会先调用 transformer 的 fit_transform 方法(fit_transform 方法其实先调用 fit 再调用 transform),然后调用 estimator 的 fit 方法来训练模型。

如果我们在 Pipeline 的最后加了一个 estimator,那么我们可以通过调用 pipe_lr 的 predict 方法来对新数据进行同样的预处理,然后对预处理后的新数据进行预测。

通过上图我们可以看到 Pipeline 将数据预处理和训练模型这些步骤串联起来,使得我们从头到尾就像在使用一个对象一样。

相关推荐
Mr数据杨4 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339864 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
phoenix@Capricornus5 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
zhz52145 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师5 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
田梓燊5 小时前
数学复习笔记 19
笔记·线性代数·机器学习
武科大许志伟6 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技6 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco6 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos
小oo呆6 小时前
【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型
人工智能·自然语言处理