kafka生产者与消费者

文章目录


提示:这里可以添加本文要记录的大概内容:

一、 pom.xml依赖包

java 复制代码
<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
    <version>2.8.0</version>
</dependency>

二、yml配置文件

yml 复制代码
spring:
  kafka:
    listener:
      concurrency: 3  #线程数
      ack-mode: manual_immediate
      type: batch #批量
    bootstrap-servers: 192.168.1.214:9092
    # 生产者配置
    producer:
#      retries: 1 # 消息发送重试次数
      batch-size: 16384
      buffer-memory: 33554432
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      key-serializer: org.apache.kafka.common.serialization.StringSerializer

    #消费者需配置,生产者不需要
    consumer:
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      group-id: goodwe-touring-car-groupid-1
      auto-offset-reset: earliest #latest, earliest, none
      enable-auto-commit: false
      auto-commit-interval: 5000
      max-poll-records: 1000        #批量消费最大数量

    topic: portable_performance

#自定义项目run, 运行kafka.
custom:
  run:
    kafka: true
    
    
    
############################### 参数说明 #########################################
    consumer:
      # 自动提交的时间间隔 在spring boot 2.X 版本中这里采用的是值的类型为Duration 需要符合特定的格式,如1S,1M,2H,5D
      auto-commit-interval: 1S
      # 该属性指定了消费者在读取一个没有偏移量的分区或者偏移量无效的情况下该作何处理:
      # latest(默认值)在偏移量无效的情况下,消费者将从最新的记录开始读取数据(在消费者启动之后生成的记录)
      # earliest :在偏移量无效的情况下,消费者将从起始位置读取分区的记录
      auto-offset-reset: earliest
      # 是否自动提交偏移量,默认值是true,为了避免出现重复数据和数据丢失,可以把它设置为false,然后手动提交偏移量
      enable-auto-commit: false
      # 键的反序列化方式
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      # 值的反序列化方式
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      listener:
        # 在侦听器容器中运行的线程数。
        concurrency: 5
        #listner负责ack,每调用一次,就立即commit
        ack-mode: manual_immediate
        missing-topics-fatal: false

三、消费者

java 复制代码
import com.alibaba.fastjson.JSON;
import com.baomidou.mybatisplus.core.toolkit.CollectionUtils;
import com.goodwe.kafkaapi.model.constant.RedisConst;
import com.goodwe.kafkaapi.model.entity.ConsumerMessageData;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;

import javax.annotation.Resource;
import java.util.*;
import java.util.stream.Collectors;


/**
 * @Description : kafka消费者
 *
 * @Author : LiYan
 * @CreateTime : 2023/8/16 8:35
 */
@Slf4j
@Configuration
public class KafkaConsumer {

    private static final String REDIS_KEY = RedisConst.getREDIS_PREFIX() + RedisConst.getKEY();

    @Resource
    private RedisTemplate<String,String> redisTemplate;

    @KafkaListener(topics = "#{'${spring.kafka.topic}'}", autoStartup = "${custom.run.kafka}")
    public void receive(List<ConsumerRecord<String, String>> listMessage, Acknowledgment ack) {
        try {
            log.info("----------------------开始消费消息--------------------------");

            if (CollectionUtils.isNotEmpty(listMessage)) {
                Map<String, ConsumerMessageData> dataMap = listMessage.stream()
                        .map(message -> JSON.parseObject(message.value(), ConsumerMessageData.class))
                        .collect(Collectors.toMap(ConsumerMessageData::getSn, data -> data, (oldValue, newValue) -> newValue));

                dataMap.forEach((key, value) -> {
                    redisTemplate.opsForZSet().add(REDIS_KEY, JSON.toJSONString(value), System.currentTimeMillis());
                });
            }
        } catch (Exception ex) {
            log.info("【断点续传处理】消费断点续传数据error;", ex);
        } finally {
            ack.acknowledge();
        }
    }
}

四、生产者

java 复制代码
@SpringBootTest
class KafkaApiApplicationTests {

    @Resource
    private KafkaTemplate<String, String> kafkaTemplate;

    @Test
    public void testRedis(){
        List<ConsumerMessageData> messageData = messageData();
        for (ConsumerMessageData data : messageData) {
            String topic = "portable_performance";
            kafkaTemplate.send(topic, JSON.toJSONString(data));
        }
    }
}


@RestController
public class KafkaController {

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @PostMapping("/send")
    public void sendMessage(@RequestBody String message) {
        kafkaTemplate.send("my-topic", message);
    }

}

总结

================== 好记性不如烂笔头=========================

相关推荐
一叶飘零_sweeeet35 分钟前
从手写 Redis 分布式锁到精通 Redisson:分布式系统的并发控制终极指南
redis·分布式·redisson
在未来等你3 小时前
Kafka面试精讲 Day 13:故障检测与自动恢复
大数据·分布式·面试·kafka·消息队列
庄小焱3 小时前
大数据存储域——Kafka实战经验总结
大数据·kafka·大数据存储域
cui_win4 小时前
基于Golang + vue3 开发的 kafka 多集群管理
分布式·kafka
iiYcyk4 小时前
kafka特性和原理
分布式·kafka
在未来等你6 小时前
Kafka面试精讲 Day 15:跨数据中心复制与灾备
大数据·分布式·面试·kafka·消息队列
Hello.Reader8 小时前
Kafka 设计与实现动机、持久化、效率、生产者/消费者、事务、复制、日志压缩与配额
分布式·kafka
叫我阿柒啊8 小时前
Java全栈开发实战:从基础到微服务的深度解析
java·微服务·kafka·vue3·springboot·jwt·前端开发
失散139 小时前
分布式专题——5 大厂Redis高并发缓存架构实战与性能优化
java·redis·分布式·缓存·架构
AscentStream9 小时前
谙流 ASK 技术解析(二):高性能低延迟
kafka·消息队列