Spark性能调优

Spark性能调优

executor内存不足

  1. 问题表现1:Container xx is running beyond physical memory limits. Current usage: xxx GB of x GB physical memory used; xx GB of x GB virtual memory used...
    原因:这个报错显而易见,数据使用的内存超过了这个executor分配的内存
  2. 问题表现2:长时间的 Fail to get RpcResponse: Timeout,最后会报heartbeat心跳检测失败而任务失败
    原因:实际上同样是因为内存不足,导致GC而超时,最终失败

解决:

1 首先可以尝试开大executor的内存分配

2 如果配置的内存无法满足数据内存,可以尝试:

2.1 增加大数据量位置的repartition数

scala 复制代码
   val allDf = sourceDf
      .repartition(5000)
      .flatMap(row => { }).toDF()

2.2 增加spark session的超时时间

scala 复制代码
    val ss = SparkSession.builder()
      .config("spark.sql.shuffle.partitions", 1000)
      .config("spark.driver.maxResultSize", "20g")
      .config("hive.exec.dynamic.partition", true)
      .config("hive.exec.dynamic.partition.mode", "nonstrict")
      .config("hive.exec.parallel", true)
      .config("mapred.max.split.size", 64000000)
      .config("mapred.min.split.size.per.node", 64000000)
      .config("mapred.min.split.size.per.rack", 64000000)
      .config("hive.exec.reducers.bytes.per.reducer", 256000000)
      .config("hive.exec.reducers.max", 2000)
      .config("hive.merge.mapredfiles", true)
      .config("hive.merge.smallfiles.avgsize", 128000000)
      .config("hive.merge.size.per.task", 128000000)
      .config("spark.yarn.executor.memoryOverhead", "10g")
      .config("spark.network.timeout", 10000000)	// 调大
      .enableHiveSupport()
      .getOrCreate()

UNION ALL代替UNION

UNION会默认对两个表的结果进行去重,如果没有去重的需要,就使用UNION ALL,速度会更快

persist与耗时监控

在主流程的对运算结果调用处persist,并打点进行耗时监控。而不是在运算方法内部persist,便于看清每一步的运算时间。

相关推荐
小鸡脚来咯3 小时前
RabbitMQ入门
分布式·rabbitmq
qq_463944864 小时前
【Spark征服之路-2.2-安装部署Spark(二)】
大数据·分布式·spark
敖云岚4 小时前
【Redis】分布式锁的介绍与演进之路
数据库·redis·分布式
weixin_505154465 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
打码人的日常分享5 小时前
智慧城市建设方案
大数据·架构·智慧城市·制造
正在努力Coding5 小时前
kafka(windows)
分布式·kafka
阿里云大数据AI技术7 小时前
ES Serverless 8.17王牌发布:向量检索「火力全开」,智能扩缩「秒级响应」!
大数据·运维·serverless
Mikhail_G8 小时前
Python应用变量与数据类型
大数据·运维·开发语言·python·数据分析
G皮T8 小时前
【Elasticsearch】映射:null_value 详解
大数据·elasticsearch·搜索引擎·映射·mappings·null_value
大霸王龙9 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游