Flink 集成和使用 Hive Metastore

想在 Flink 中使用 Hive Metastore 其实只需要将 Flink Hive Connector 以及 Hive Metastore 有关的 Jar 包部署到 `${FLINK_HOME}/lib` 下即可,稍后我们会介绍一下具体做法。但是,如果是 AWS EMR,会有所不同,主要是 EMR 中的默写包是改写过的,特别是和 Hive Metastore 的交互要多留心,因为 EMR 上还有另外一套 Metatstore:Glue Data Catalog,所以,简单的复制开源的 Jar 包可能会有问题,最好做法还是从 EMR 集群上拷贝本地带 `amzn` 后缀的 Jar 包。

EMR 官方文档给出了具体脚本:https://docs.aws.amazon.com/emr/latest/ReleaseGuide/flink-configure.html,以下是以 EMR 6.15 ( Flink 1.17.1)版本为例修改后的脚本:

bash 复制代码
sudo -u flink cp /usr/lib/hive/lib/antlr-runtime-3.5.2.jar /usr/lib/flink/lib 
sudo -u flink cp /usr/lib/hive/lib/hive-exec-3.1.3*.jar /usr/lib/flink/lib 
sudo -u flink cp /usr/lib/hive/lib/libfb303-0.9.3.jar /usr/lib/flink/lib 
sudo -u flink cp /usr/lib/flink/opt/flink-connector-hive_2.12-1.17.1-amzn-1.jar /usr/lib/flink/lib

部署好 Jar 包,如果是 Session 模式,需要重新启动新的 Session。在 Flink 中使用 Hive Metastore 的方法是:在 Flink Sql Client 中执行:

sql 复制代码
CREATE CATALOG hive WITH (
  'type' = 'hive',
  'hive-conf-dir' = '/etc/hive/conf'
);

USE CATALOG hive;

CREATE TABLE IF NOT EXISTS your_table (
...
);

如果是开源 Flink,需要根据 [https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/table/hive/overview/#dependencies\](https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/table/hive/overview/#dependencies) 提供的依赖项 (以 Flink 1.17.1 版本为例):

xml 复制代码
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-hive_2.12</artifactId>
  <version>1.17.1</version>
</dependency>

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-api-java-bridge_2.12</artifactId>
  <version>1.17.1</version>
</dependency>

<!-- Hive Dependency -->
<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>3.1.3</version>
</dependency>

根据 《快速下载Jar包及其依赖Jar包的方法》 一文第2节介绍的方法制作出依赖包并部署于 ${FLINK_HOME}/lib 下即可。

参考:

https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/table/hive/hive_catalog/

相关推荐
迎仔17 小时前
10-流处理引擎Flink介绍:大数据世界的“实时监控中心”
大数据·flink
ApacheSeaTunnel1 天前
Apache SeaTunnel Zeta、Flink、Spark 怎么选?底层原理 + 实战对比一次讲透
大数据·flink·spark·开源·数据集成·seatunnel·数据同步
代码匠心1 天前
从零开始学Flink:状态管理与容错机制
java·大数据·后端·flink·大数据处理
Gain_chance2 天前
32-学习笔记尚硅谷数仓搭建-DWD层首日数据装载脚本及每日数据装载脚本
大数据·数据仓库·hive·笔记·学习
Gain_chance2 天前
29-学习笔记尚硅谷数仓搭建-DWD层交易域下单事务事实表和交易域支付成功事务事实表
数据仓库·hive·笔记·学习·datagrip
海南java第二人2 天前
Flink动态字符串处理框架:构建灵活可配置的实时数据管道
java·flink
TTBIGDATA2 天前
【Ranger】Ambari开启Kerberos 后 ,Ranger 中 Hive 策略里,Resource lookup fail 线程池超时优化
大数据·数据仓库·hive·hadoop·ambari·hdp·ranger
Hello.Reader2 天前
Flink 内存与资源调优从 Process Memory 到 Fine-Grained Resource Management
大数据·flink
王锋(oxwangfeng)3 天前
Apache Flink 在 Kubernetes 上的高效部署与优化实践
flink·kubernetes·apache