[R] Why data manipulation is crucial and sensitive?

What does a data scientist really do?

Identifying the pattern in cultural consumption, making fancy graph, engage a dialogue between data and the existing literature, refining hypothesis....(done within one months with three to four online meetings with partners = no more than 35 hours to agree on the main assertions)

|---------------------------------------------------------------------------------|-----|------|
| Litteratue review | 60 | 20% |
| Primary definition of the hypothesis | 5 | 2% |
| Getting familiar with the codebook and the survey | 10 | 3% |
| Explore the potential variable of interest | 20 | 7% |
| Rename the variable of interest | 15 | 5% |
| Recode the variable of interest and translate in English | 70 | 23% |
| Non answer cleaning | 5 | 2% |
| Rename the labels (levels) | 10 | 3% |
| Primary analysis of the outputs (inspect the recoded variable and bivariate an) | 20 | 7% |
| Reformulation of some hypothesis | 5 | 2% |
| Plotting the first MCA and analyze them | 15 | 5% |
| Compare model strength and understand the primary outputs | 5 | 2% |
| Refining hypothesis and assertions | 15 | 5% |
| Writing the article | 50 | 16% |
| | 305 | 100% |

What is "cleaning and organizing data"?

Definition:

  • Cleaning and organizing data refer to the process of preparing raw data for analysis by identifying and correcting errors, inconsistencies, and inaccuracies, and structuring it in a way that facilitates effective analysis.

Steps Involved:

  • Data Cleaning:
    • Handling missing values.
    • Removing duplicates.
    • Correcting errors and inconsistencies.
  • Data Organization:
    • Structuring data in a readable format.
    • Categorizing and labeling data.
    • Creating meaningful variables.

Removing Duplicates:

R 复制代码
# Removing duplicate rows
unique_data <- unique(raw_data)

Correcting Errors and Inconsistencies

R 复制代码
# Replacing incorrect values
corrected_data <- replace(raw_data, incorrect_condition, replacement_value)

Structuring Data:

R 复制代码
# Creating a data frame
structured_data <- data.frame(variable1 = vector1, variable2 = vector2, ...)

Categorizing and Labeling Data:

R 复制代码
# Creating factors for categorical variables
categorized_data <- factor(raw_data$variable, levels = c("Category1", "Category2", ...))

Creating Meaningful Variables:

R 复制代码
# Creating a new variable based on existing ones
raw_data$new_variable <- raw_data$variable1 + raw_data$variable2

Common issue with online survey

Data not writen in the good format: the typical issue with year of birth

R 复制代码
家庭状况与教育经历
47、您的出生年份是?(请填写整数,例如:1984) (填空题 *必答)
________________________

Section Familial Situation and Education background
47. Which year are you born (Please write number such as 1984)

In the raw data, we have 2 people born in 1898 = 120 years old

Given the average age of the population they are likely to be born in 1998

25 respondents answered using the format Year/Month/Birth

Ex: 19940105

2 respondents answered using very original format

Ex: 930524 / 197674

1 respondent just answer 1

How to clean efficiently with R?

tidyR

= it is a very important package to transform a long table from a wide table

Will not be covered, but basic operation using tidyr are explained in this website: https://mgimond.github.io/ES218/Week03b.html

dplyr

dplyr is a very important package that enables you to select specific variable and data, and to transform them

dplyr Package in R:
  1. Selection of Specific Variables:

    • select() function: It allows you to choose specific columns (variables) from a data frame.

      R 复制代码
      # Example: Selecting columns "variable1" and "variable2"
      selected_data <- select(your_data_frame, variable1, variable2)
  2. Filtering Data:

    • filter() function: Enables you to subset your data based on specific conditions
    R 复制代码
    # Example: Filtering data where "variable1" is greater than 10
    filtered_data <- filter(your_data_frame, variable1 > 10)
  3. Transformation (Mutating) Data:

    • mutate() function: Allows you to create new variables or modify existing ones.
    R 复制代码
    # Example: Creating a new variable "new_variable" as a transformation of existing variables
    mutated_data <- mutate(your_data_frame, new_variable = variable1 + variable2)
  4. Arranging Data:

    • arrange() function: Sorts rows based on specified variables.
    R 复制代码
    # Example: Sorting data based on "variable1" in ascending order
    sorted_data <- arrange(your_data_frame, variable1)
  5. Summarizing Data:

    • summarize() function: Aggregates data, often used with functions like mean, sum, etc.
    R 复制代码
    # Example: Calculating the mean of "variable1"
    summary_stats <- summarize(your_data_frame, mean_variable1 = mean(variable1))

The magrittr package

The magrittr package offers a set of operators which make your code more readable by:

structuring sequences of data operations left-to-right, avoiding nested function calls, minimizing the need for local variables and function definitions, and making it easy to add steps anywhere in the sequence of operations.

The operators pipe their left-hand side values forward into expressions that appear on the right-hand side, i.e. one can replace f(x) with x %>% f(), where %>% is the (main) pipe-operator.

https://magrittr.tidyverse.org/

相关推荐
Ajiang28247353041 小时前
对于C++中stack和queue的认识以及priority_queue的模拟实现
开发语言·c++
幽兰的天空1 小时前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
远歌已逝2 小时前
维护在线重做日志(二)
数据库·oracle
qq_433099403 小时前
Ubuntu20.04从零安装IsaacSim/IsaacLab
数据库
Dlwyz3 小时前
redis-击穿、穿透、雪崩
数据库·redis·缓存
Theodore_10224 小时前
4 设计模式原则之接口隔离原则
java·开发语言·设计模式·java-ee·接口隔离原则·javaee
工业甲酰苯胺5 小时前
Redis性能优化的18招
数据库·redis·性能优化
没书读了6 小时前
ssm框架-spring-spring声明式事务
java·数据库·spring
----云烟----6 小时前
QT中QString类的各种使用
开发语言·qt
lsx2024066 小时前
SQL SELECT 语句:基础与进阶应用
开发语言