算法价值3-贪心算法

目录

例子1:

问题描述:

算法步骤:

代码:

结果:

例子2:

问题描述:

算法步骤:

代码:

结果:

结论:


贪心算法(Greedy Algorithm)是一种优化问题的算法范式,它通过每一步的局部最优选择来达到全局最优解。在每一步上做出当前情况下的最佳选择,而不考虑全局未来的影响。贪心算法通常比较简单、高效,并且适用于一些特定类型的问题。

基本思想:

  1. 选择当前状态下的最优解。

  2. 不考虑之前选择对未来的影响。

贪心算法的适用条件:

  • 问题的最优解可以通过一系列局部最优选择得到。
  • 不能回退(不能取消已经做出的选择)。

例子1:

找零钱问题

问题描述:

给定一些面额不同的硬币,要求用最少的硬币凑出某个金额。

算法步骤:

  1. 对于每一个硬币,都选择尽量多的使用,直到超过目标金额。

  2. 重复这个过程,直到凑出了目标金额。

代码:

python 复制代码
def greedy_coin_change(coins, target_amount):
    coins.sort(reverse=True)  # 面额大的硬币排在前面
    change = []
    remaining_amount = target_amount

    for coin in coins:
        while remaining_amount >= coin:
            change.append(coin)
            remaining_amount -= coin

    if remaining_amount == 0:
        return change
    else:
        return "无法凑出目标金额"

# 示例
coins = [25, 10, 5, 1]
target_amount = 63
result = greedy_coin_change(coins, target_amount)
print(result)

结果:

25, 25, 10, 1, 1, 1

在这个例子中,我们选择了尽量多地使用面额较大的硬币,从而达到用最少硬币凑出目标金额的目的。这是一个简单的贪心算法示例。需要注意的是,贪心算法并不总是能够得到全局最优解,但在一些问题上表现得非常好。

例子2:

活动选择问题(Activity Selection Problem)

问题描述:

在这个问题中,我们有一系列活动,每个活动都有一个开始时间和结束时间。我们的目标是选择最大数量的互不冲突的活动。

算法步骤:

  1. 将活动按结束时间从早到晚排序。
  2. 选择第一个活动。
  3. 从剩余的活动中选择第一个与前一个已选活动不冲突的活动。
  4. 重复步骤3,直到没有更多的活动可选。

代码:

python 复制代码
def greedy_activity_selection(activities):
    # 按结束时间从早到晚排序
    activities.sort(key=lambda x: x[1])

    selected_activities = [activities[0]]
    # 记录上一个活动的结束时间
    last_end_time = activities[0][1]

    for activity in activities[1:]:
        start_time, end_time = activity
        # 只要开始时间大于上一个活动的结束时间,说明时间不冲突,就选择它
        if start_time >= last_end_time:
            selected_activities.append(activity)
            last_end_time = end_time

    return selected_activities


# 示例
activities = [(1, 4), (3, 5), (0, 6), (5, 7), (3, 9), (5, 9), (6, 10), (8, 11), (8, 12), (2, 14), (12, 16)]
result = greedy_activity_selection(activities)
print(result)

结果:

(1, 4), (5, 7), (8, 11), (12, 16)

在这个例子中,我们按照活动的结束时间进行排序,并选择尽量早结束的活动。这样就能够安排更多的互不冲突的活动。这是一个典型的贪心算法应用。贪心算法在活动选择问题上表现得很好,因为每次选择都是局部最优的。

结论:

贪心算法是一个直接、简单、好用的算法。

相关推荐
好开心啊没烦恼21 分钟前
Python 数据分析:DataFrame,生成,用字典创建 DataFrame ,键值对数量不一样怎么办?
开发语言·python·数据挖掘·数据分析
github_czy23 分钟前
RRF (Reciprocal Rank Fusion) 排序算法详解
算法·排序算法
许愿与你永世安宁1 小时前
力扣343 整数拆分
数据结构·算法·leetcode
爱coding的橙子1 小时前
每日算法刷题Day42 7.5:leetcode前缀和3道题,用时2h
算法·leetcode·职场和发展
周树皮不皮1 小时前
20250704【翻转&二叉树】|Leetcodehot100之226【pass】&今天计划
python
魔芋红茶1 小时前
spring-initializer
python·学习·spring
喜欢吃豆1 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
一个天蝎座 白勺 程序猿1 小时前
Python(28)Python循环语句指南:从语法糖到CPython字节码的底层探秘
开发语言·python
满分观察网友z2 小时前
从一次手滑,我洞悉了用户输入的所有可能性(3330. 找到初始输入字符串 I)
算法
YuTaoShao2 小时前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵