ML:2-2-3 多分类2

文章目录

  • [1. softmax的改进实现](#1. softmax的改进实现)
  • [2. 多个输出的分类multi-label classification](#2. 多个输出的分类multi-label classification)

1. softmax的改进实现

  1. 在logistic regression里面,计算loss的两种方法里,直接把a放进式子的计算更加的精确。
  2. 那么在代码里的实现:将output layer的activation改成linear,再明确logstic里填写z。最后,代码的计算会变得更精确,虽然看起来麻烦一点。
  3. 在softmax里也一样的,把output layer里的activation改成linear。同时,编译的时候把from_logits = True加上。
  1. 有一点需要注意的:我们这里的output layer不再是softmax了,而是linear。所以我们的predict不会再输出a1-a10的概率了。(z1-z10)


2. 多个输出的分类multi-label classification

相关推荐
人工智能训练师1 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8282 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡2 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成3 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃3 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)3 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao3 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383924 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI4 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿4 小时前
机器学习|大模型为什么会出现"幻觉"?
人工智能