ML:2-2-3 多分类2

文章目录

  • [1. softmax的改进实现](#1. softmax的改进实现)
  • [2. 多个输出的分类multi-label classification](#2. 多个输出的分类multi-label classification)

1. softmax的改进实现

  1. 在logistic regression里面,计算loss的两种方法里,直接把a放进式子的计算更加的精确。
  2. 那么在代码里的实现:将output layer的activation改成linear,再明确logstic里填写z。最后,代码的计算会变得更精确,虽然看起来麻烦一点。
  3. 在softmax里也一样的,把output layer里的activation改成linear。同时,编译的时候把from_logits = True加上。
  1. 有一点需要注意的:我们这里的output layer不再是softmax了,而是linear。所以我们的predict不会再输出a1-a10的概率了。(z1-z10)


2. 多个输出的分类multi-label classification

相关推荐
GitCode官方5 分钟前
参会预告 | AtomGit 邀您共赴 TritonNext 2026 技术大会,解锁 AI 系统与编译生态新机遇
人工智能·开源·atomgit
MobiusStack13 分钟前
Cursor团队最新文章解读丨动态上下文发现,重新定义AI记忆
人工智能
Rui_Freely26 分钟前
Vins-Fusion之 相机—IMU在线标定(十一)
人工智能·算法·计算机视觉
沛沛老爹27 分钟前
Web开发者5分钟上手:Agent Skills环境搭建与基础使用实战
java·人工智能·llm·llama·rag·agent skills
DeepFlow 零侵扰全栈可观测37 分钟前
3分钟定位OA系统GC瓶颈:DeepFlow全栈可观测平台实战解析
大数据·运维·人工智能·云原生·性能优化
想用offer打牌1 小时前
一站式讲清Spring AI Alibaba的OverAllState和RunnableConfig
人工智能·架构·github
生成论实验室1 小时前
生成论之基:“阴阳”作为元规则的重构与证成——基于《易经》与《道德经》的古典重诠与现代显象
人工智能·科技·神经网络·算法·架构
数据分享者1 小时前
对话对齐反馈数据集:12000+高质量人类-助手多轮对话用于RLHF模型训练与评估-人工智能-大语言模型对齐-人类反馈强化学习-训练符合人类期望的对话模型
人工智能·语言模型·自然语言处理
Java后端的Ai之路1 小时前
【人工智能领域】- 卷积神经网络(CNN)深度解析
人工智能·神经网络·cnn
_清欢l1 小时前
Dify+test2data实现自然语言查询数据库
数据库·人工智能·openai