ML:2-2-3 多分类2

文章目录

  • [1. softmax的改进实现](#1. softmax的改进实现)
  • [2. 多个输出的分类multi-label classification](#2. 多个输出的分类multi-label classification)

1. softmax的改进实现

  1. 在logistic regression里面,计算loss的两种方法里,直接把a放进式子的计算更加的精确。
  2. 那么在代码里的实现:将output layer的activation改成linear,再明确logstic里填写z。最后,代码的计算会变得更精确,虽然看起来麻烦一点。
  3. 在softmax里也一样的,把output layer里的activation改成linear。同时,编译的时候把from_logits = True加上。
  1. 有一点需要注意的:我们这里的output layer不再是softmax了,而是linear。所以我们的predict不会再输出a1-a10的概率了。(z1-z10)


2. 多个输出的分类multi-label classification

相关推荐
这张生成的图像能检测吗16 分钟前
(论文速读)多任务深度学习框架下基于Lamb波的多损伤数据集构建与量化算法
人工智能·深度学习·算法·数据集·结构健康监测
二川bro19 分钟前
2025年Python机器学习全栈指南:从基础到AI项目部署
人工智能·python·机器学习
梦想的初衷~22 分钟前
“科研创新与智能化转型“暨AI智能体(Agent)开发及与大语言模型的本地化部署、优化技术实践
人工智能·语言模型·自然语言处理·生物信息·材料科学
IT_陈寒1 小时前
React性能翻倍!90%开发者忽略的5个Hooks最佳实践
前端·人工智能·后端
大任视点1 小时前
消费电子PCB需求激增,科翔股份发力AI手机终端大周期
人工智能·智能手机
Learn Beyond Limits1 小时前
Correlation vs Cosine vs Euclidean Distance|相关性vs余弦相似度vs欧氏距离
人工智能·python·神经网络·机器学习·ai·数据挖掘
晨非辰3 小时前
数据结构排序系列指南:从O(n²)到O(n),计数排序如何实现线性时间复杂度
运维·数据结构·c++·人工智能·后端·深度学习·排序算法
2301_812914873 小时前
简单神经网络
人工智能·深度学习·神经网络
koo3644 小时前
pytorch环境配置
人工智能·pytorch·python
模型启动机8 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型