简单神经网络

数据处理

复制代码
# 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 打印下尺寸
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放
# 将数据转换为 PyTorch 张量,因为 PyTorch 使用张量进行训练
# y_train和y_test是整数,所以需要转化为long类型,如果是float32,会输出1.0 0.0
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)
import torch
import torch.nn as nn
import torch.optim as optim

模型实例化

python 复制代码
class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Module
    def __init__(self): # 初始化函数
        super(MLP, self).__init__() # 调用父类的初始化函数
 # 前三行是八股文,后面的是自定义的

        self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 实例化模型
model = MLP()

模型训练

python 复制代码
# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
num_epochs = 20000 # 训练的轮数

# 用于存储每个 epoch 的损失值
losses = []

for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始
    # 前向传播
    outputs = model.forward(X_train)   # 显式调用forward函数
    # outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法
    loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签

    # 反向传播和优化
    optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsize
    loss.backward() # 反向传播计算梯度
    optimizer.step() # 更新参数

    # 记录损失值
    losses.append(loss.item())

    # 打印训练信息
    if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

可视化结果

python 复制代码
import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()
相关推荐
晨非辰1 小时前
数据结构排序系列指南:从O(n²)到O(n),计数排序如何实现线性时间复杂度
运维·数据结构·c++·人工智能·后端·深度学习·排序算法
koo3642 小时前
pytorch环境配置
人工智能·pytorch·python
模型启动机6 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型
k***1956 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG7 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q7847 小时前
深度学习技术
人工智能·深度学习
KKKlucifer7 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全7 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖7 小时前
这个Q3,百度开始AI
人工智能·百度