轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型

目录

往期精彩内容:

前言

模型整体结构

[1 变分模态分解VMD的Python示例](#1 变分模态分解VMD的Python示例)

[第一步,Python 中 VMD包的下载安装:](#第一步,Python 中 VMD包的下载安装:)

第二步,导入相关包进行分解

[2 轴承故障数据的预处理](#2 轴承故障数据的预处理)

[2.1 导入数据](#2.1 导入数据)

[2.2 故障VMD分解可视化](#2.2 故障VMD分解可视化)

[第一步, 模态选取](#第一步, 模态选取)

第二步,故障VMD分解可视化

[2.3 故障数据的VMD分解预处理](#2.3 故障数据的VMD分解预处理)

[3 交叉注意力机制](#3 交叉注意力机制)

​编辑

[3.1 Cross attention概念](#3.1 Cross attention概念)

[3.2 Cross-attention算法](#3.2 Cross-attention算法)

[3 基于VMD+CNN-BiLSTM-CrossAttention的轴承故障诊断分类](#3 基于VMD+CNN-BiLSTM-CrossAttention的轴承故障诊断分类)

[3.1 定义VMD+CNN-BiLSTM-CrossAttention分类网络模型](#3.1 定义VMD+CNN-BiLSTM-CrossAttention分类网络模型)

[3.2 设置参数,训练模型](#3.2 设置参数,训练模型)

[3.3 模型评估](#3.3 模型评估)

故障十分类混淆矩阵:

代码、数据如下:


创新点:利用交叉注意力机制融合模型!

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT_pyts 小波变换 故障-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD_轴承诊断 pytorch-CSDN博客

Pytorch-LSTM轴承故障一维信号分类(一)_cwru数据集pytorch训练-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行变分模态分解VMD的介绍与数据预处理,最后通过Python实现基于交叉注意力CNN-BiLSTM-CrossAttention的时空特征融合模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集时域图-CSDN博客

模型整体结构

模型整体结构如下所示:

  1. VMD 分解:
  • 输入:轴承振动信号

  • 操作:通过VMD技术将原始信号分解成多个本征模态函数(IMF)

  • 输出:每个IMF表示不同频率范围内的振动成分

  1. CNN 空间特征提取:
  • 输入:VMD分解得到的IMFs

  • 操作:对每个IMF进行卷积和池化操作,提取空间特征

  • 输出:卷积池化后的特征表示,用于捕获不同频率下的振动空间特征

  1. BiLSTM 时序特征提取:
  • 输入:VMD分解得到的IMFs

  • 操作:双向LSTM网络学习序列信息,关注重要的时序特征

  • 输出:经BiLSTM处理后的时序特征表示,具有更好的故障信号时序建模能力

  1. 交叉注意力机制特征融合:
  • 输入:CNN提取的空间特征,BiLSTM提取的时序特征

  • 交叉注意力机制:使用交叉注意力机制融合时域和频域的特征。可以通过计算注意力权重,使得模型更关注重要的特征,提高模型性能和泛化能力

1 变分模态分解VMD的Python示例

第一步,Python 中 VMD包的下载安装:

python 复制代码
# 下载
pip install vmdpy

# 导入
from vmdpy import VMD

第二步,导入相关包进行分解

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from vmdpy import VMD

# -----测试信号及其参数--start-------------
t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 20 * t)

T = len(signal)
fs = 1/T
t = np.arange(1,T+1)/T

# alpha 惩罚系数;带宽限制经验取值为抽样点长度1.5-2.0倍.
# 惩罚系数越小,各IMF分量的带宽越大,过大的带宽会使得某些分量包含其他分量言号;
alpha = 2000

#噪声容限,一般取 0, 即允许重构后的信号与原始信号有差别。
tau = 0
#模态数量  分解模态(IMF)个数
K = 5

#DC 合成信号若无常量,取值为 0;若含常量,则其取值为 1
# DC 若为0则让第一个IMF为直流分量/趋势向量
DC = 0

#初始化ω值,当初始化为 1 时,均匀分布产生的随机数
# init 指每个IMF的中心频率进行初始化。当初始化为1时,进行均匀初始化。
init = 1

#控制误差大小常量,决定精度与迭代次数
tol = 1e-7
# -----测试信号及其参数--end----------

# Apply VMD
# 输出U是各个IMF分量,u_hat是各IMF的频谱,omega为各IMF的中心频率
u, u_hat, omega= VMD(signal, alpha, tau, K, DC, init, tol)

#得到中心频率的数值
print(omega[-1])

# Plot the original signal and decomposed modes
plt.figure(figsize=(15,10))
plt.subplot(K+1, 1, 1)
plt.plot(t, signal, 'r')
plt.title("原始信号")

for num in range(K):
    plt.subplot(K+1, 1, num+2)
    plt.plot(t, u[num,:])
    plt.title("IMF "+str(num+1))

plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 故障VMD分解可视化

第一步, 模态选取

根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。

第二步,故障VMD分解可视化

2.3 故障数据的VMD分解预处理

3 交叉注意力机制

3.1 Cross attention概念

  • Transformer架构中混合两种不同嵌入序列的注意机制

  • 两个序列必须具有相同的维度

  • 两个序列可以是不同的模式形态(如:文本、声音、图像)

  • 一个序列作为输入的Q,定义了输出的序列长度,另一个序列提供输入的K&V

3.2 Cross-attention算法

  • 拥有两个序列S1、S2

  • 计算S1的K、V

  • 计算S2的Q

  • 根据K和Q计算注意力矩阵

  • 将V应用于注意力矩阵

  • 输出的序列长度与S2一致

在融合过程中,我们将经过CNN卷积池化操作的空间特征作为查询序列,BiLSTM输出的时序特征作为键值对序列。通过计算查询序列与键值对序列之间的注意力权重,我们可以对不同特征之间的关联程度进行建模。

3 基于VMD+CNN-BiLSTM-CrossAttention的轴承故障诊断分类

下面基于VMD分解后的轴承故障数据,先把分解的分量通过CNN进行卷积池化操作提取信号的空间特征,然后同时把分量送入BiLSTM层提取时序特征,使用交叉注意力机制融合时域和频域的特征, 对特征进行增强,实现CNN-BiLSTM-CrossAttention信号的分类方法。

3.1 定义VMD+CNN-BiLSTM-CrossAttention分类网络模型

3.2 设置参数,训练模型

50个epoch,准确率将近98%,用VMD+CNN-BiLSTM-CrossAttention网络分类效果显著,模型能够充分提取轴承故障信号的空间和时序特征,收敛速度快,性能优越,精度高,交叉注意力机制能够对不同特征之间的关联程度进行建模,从故障信号频域、时域特征中属于提取出对模型识别重要的特征,效果明显,继续调参可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加CNN层数和隐藏层的维度,微调学习率;

  • 调整BiLSTM层数和维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:

相关推荐
桃花键神1 分钟前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜22 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6191 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen1 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝1 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界1 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭3 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python