Elasticsearch(简称ES)性能优化 实践

Elasticsearch(简称ES)性能优化主要包括以下几个方面:

索引优化:

  • 选择合适的分片数:根据业务需求和数据量合理设置分片数,避免过多或过少分片造成性能问题。分片数过多会导致创建分片速度变慢、集群易崩溃等问题,分片过少则可能导致查询和写入性能下降。

  • 使用索引别名:当需要更新或重建索引时,使用索引别名可以避免查询中断,提高系统稳定性。

  • 优化索引结构:根据实际需求,为字段设置合适的类型、分析和索引,提高查询效率。

缓存优化:

  • 合理使用缓存:ES中主要有三种缓存,分别是过滤器缓存、分片查询缓存和操作系统缓存。合理配置和使用这些缓存可以显著提高查询和过滤速度。

  • 监控缓存指标:通过监控ES的各个度量指标,如过滤器缓存容量和缓存回收次数,来调整缓存配置,使其发挥最佳性能。

查询优化:

  • 使用过滤器:对于范围查询和前缀查询等,推荐使用过滤器而非评分查询,因为过滤器可以被缓存,提高查询速度。

  • 分页查询优化:使用search_after代替fromsize进行深度分页查询,避免排序和分页数据的重复计算。

  • 缓存查询结果:通过设置fromsize参数,合理控制查询结果的缓存,提高相同查询的响应速度。

集群优化:

  • 拆分集群:根据业务特点和地域分布,将集群拆分为多个小集群,以提高性能和稳定性。

  • 负载均衡:在节点之间分配查询和索引任务,避免某个节点过载,影响整体性能。

  • 调整副本数:根据实际需求和硬件条件,合理调整副本数,提高数据可用性和查询性能。

硬件和系统优化:

  • 选择合适的硬件:根据业务需求和预算,配置合适的CPU、内存和存储设备。

  • 网络优化:优化网络配置,提高网络带宽和延迟,以提高数据传输速度。

  • 操作系统优化:调整操作系统参数,如文件系统、页缓存和进程管理,以提高ES性能。

通过以上这些最佳实践,可以有效地提高Elasticsearch的性能,使其更好地应对复杂的数据处理和查询任务。在实际应用中,还需要根据具体业务需求和硬件条件,不断调整和优化参数配置,以达到最佳性能。

相关推荐
大霸王龙1 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
点赋科技2 小时前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
YSGZJJ2 小时前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Doker 多克2 小时前
Flink CDC —部署模式
大数据·flink
异常君2 小时前
高并发数据写入场景下 MySQL 的性能瓶颈与替代方案
java·mysql·性能优化
Guheyunyi2 小时前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
Channing Lewis3 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣3 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IvanCodes4 小时前
七、Sqoop Job:简化与自动化数据迁移任务及免密执行
大数据·数据库·hadoop·sqoop