Elasticsearch(简称ES)性能优化 实践

Elasticsearch(简称ES)性能优化主要包括以下几个方面:

索引优化:

  • 选择合适的分片数:根据业务需求和数据量合理设置分片数,避免过多或过少分片造成性能问题。分片数过多会导致创建分片速度变慢、集群易崩溃等问题,分片过少则可能导致查询和写入性能下降。

  • 使用索引别名:当需要更新或重建索引时,使用索引别名可以避免查询中断,提高系统稳定性。

  • 优化索引结构:根据实际需求,为字段设置合适的类型、分析和索引,提高查询效率。

缓存优化:

  • 合理使用缓存:ES中主要有三种缓存,分别是过滤器缓存、分片查询缓存和操作系统缓存。合理配置和使用这些缓存可以显著提高查询和过滤速度。

  • 监控缓存指标:通过监控ES的各个度量指标,如过滤器缓存容量和缓存回收次数,来调整缓存配置,使其发挥最佳性能。

查询优化:

  • 使用过滤器:对于范围查询和前缀查询等,推荐使用过滤器而非评分查询,因为过滤器可以被缓存,提高查询速度。

  • 分页查询优化:使用search_after代替fromsize进行深度分页查询,避免排序和分页数据的重复计算。

  • 缓存查询结果:通过设置fromsize参数,合理控制查询结果的缓存,提高相同查询的响应速度。

集群优化:

  • 拆分集群:根据业务特点和地域分布,将集群拆分为多个小集群,以提高性能和稳定性。

  • 负载均衡:在节点之间分配查询和索引任务,避免某个节点过载,影响整体性能。

  • 调整副本数:根据实际需求和硬件条件,合理调整副本数,提高数据可用性和查询性能。

硬件和系统优化:

  • 选择合适的硬件:根据业务需求和预算,配置合适的CPU、内存和存储设备。

  • 网络优化:优化网络配置,提高网络带宽和延迟,以提高数据传输速度。

  • 操作系统优化:调整操作系统参数,如文件系统、页缓存和进程管理,以提高ES性能。

通过以上这些最佳实践,可以有效地提高Elasticsearch的性能,使其更好地应对复杂的数据处理和查询任务。在实际应用中,还需要根据具体业务需求和硬件条件,不断调整和优化参数配置,以达到最佳性能。

相关推荐
JZC_xiaozhong2 分钟前
主数据同步失效引发的业务风险与集成架构治理
大数据·架构·数据一致性·mdm·主数据管理·数据孤岛解决方案·数据集成与应用集成
T062051412 分钟前
【数据集】全国各地区教育139个相关指标数据集(2000-2024年)
大数据
故乡de云27 分钟前
Vertex AI 企业账号体系,Google Cloud 才能完整支撑
大数据·人工智能
汽车仪器仪表相关领域32 分钟前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
木头程序员43 分钟前
大模型边缘部署突破:动态推理技术与精度-延迟-能耗帕累托优化
大数据·人工智能·计算机视觉·自然语言处理·智能手机·数据挖掘
DX_水位流量监测1 小时前
无人机测流之雷达流速仪监测技术分析
大数据·网络·人工智能·数据分析·自动化·无人机
鹿衔`1 小时前
Hadoop HDFS 核心机制与设计理念浅析文档
大数据·hadoop·hdfs
萤丰信息1 小时前
开启园区“生命体”时代——智慧园区系统,定义未来的办公与生活
java·大数据·运维·数据库·人工智能·生活·智慧园区
TDengine (老段)1 小时前
TDengine Rust 连接器进阶指南
大数据·数据库·物联网·rust·时序数据库·tdengine·涛思数据
YangYang9YangYan2 小时前
中专大数据技术专业学习数据分析的价值分析
大数据·学习·数据分析