opencv c++ (6):直方图

1. 绘制直方图

api不在做详细介绍,具体看以下代码例子

cpp 复制代码
#include <iostream>
#include<opencv.hpp>
#include<opencv2\highgui\highgui.hpp>

using namespace std;
using namespace cv;

int main()
{

	Mat src = imread("src.jpg");
	if (src.empty())
	{
		cout << "could not open file!";
		cout << endl;
		return -1;
	}
	imshow("src", src);
	//分离
	vector<Mat>mv;
	split(src, mv);

	//1. 计算直方图
	int histSize = 256;
	Mat b_hist, g_hist, r_hist;
	float range[] = { 0,255 };
	const float* histRanges = { range };

	calcHist(&mv[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRanges, true, false);
	calcHist(&mv[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRanges, true, false);
	calcHist(&mv[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRanges, true, false);

	Mat result = Mat::zeros(Size(600, 400), CV_8UC3);
	int margin = 50;
	int nm = result.rows - 2 * margin;
	normalize(b_hist, b_hist, 0, nm, NORM_MINMAX, -1, Mat());
	normalize(g_hist, g_hist, 0, nm, NORM_MINMAX, -1, Mat());
	normalize(r_hist, r_hist, 0, nm, NORM_MINMAX, -1, Mat());

	float step = 500.0 / 256.0;
	for (int i = 0; i < 255; i++)
	{
		line(result, Point(step * i, 50 + (nm - b_hist.at<float>(i, 0))), Point(step * (i + 1), 50 + (nm - b_hist.at<float>(i + 1, 0))), Scalar(255, 0, 0), 2, 8, 0);
		line(result, Point(step * i, 50 + (nm - g_hist.at<float>(i, 0))), Point(step * (i + 1), 50 + (nm - g_hist.at<float>(i + 1, 0))), Scalar(0, 255, 0), 2, 8, 0);
		line(result, Point(step * i, 50 + (nm - r_hist.at<float>(i, 0))), Point(step * (i + 1), 50 + (nm - r_hist.at<float>(i + 1, 0))), Scalar(0, 0, 255), 2, 8, 0);
	}
	imshow("hist-result", result);
	waitKey(0);
	destroyAllWindows();
	return 0;

}

2. 直方图均衡化

作用:它通过重新分布图像的像素值,使得图像的直方图在整个灰度范围内均匀分布。

好处:增加对比度,增加细节,在处理灰色图像的时候经常会用到这个方法来做图像增强

api很简单,下面是个例子。

cpp 复制代码
#include <iostream>
#include<opencv.hpp>
#include<opencv2\highgui\highgui.hpp>

using namespace std;
using namespace cv;

int main()
{

	Mat src = imread("src.jpg");
	if (src.empty())
	{
		cout << "could not open file!";
		cout << endl;
		return -1;
	}
	imshow("src", src);
	Mat gray, dst;

	//转成灰度图
	cvtColor(src, gray, COLOR_BGR2GRAY);
	imshow("gray", gray);
	//均衡化
	equalizeHist(gray, dst);
	imshow("dst", dst);
	waitKey(0);
	destroyAllWindows();
	return 0;

}

结果:可以明显看到图片的细节变多了,图像对比度增加了。

相关推荐
李元豪3 小时前
【智鹿空间】c++实现了一个简单的链表数据结构 MyList,其中包含基本的 Get 和 Modify 操作,
数据结构·c++·链表
UestcXiye4 小时前
《TCP/IP网络编程》学习笔记 | Chapter 9:套接字的多种可选项
c++·计算机网络·ip·tcp
埃菲尔铁塔_CV算法4 小时前
图像算法之 OCR 识别算法:原理与应用场景
图像处理·python·计算机视觉
一丝晨光5 小时前
编译器、IDE对C/C++新标准的支持
c语言·开发语言·c++·ide·msvc·visual studio·gcc
丶Darling.5 小时前
Day40 | 动态规划 :完全背包应用 组合总和IV(类比爬楼梯)
c++·算法·动态规划·记忆化搜索·回溯
奶味少女酱~5 小时前
常用的c++特性-->day02
开发语言·c++·算法
思通数据6 小时前
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
大数据·人工智能·目标检测·计算机视觉·自然语言处理·数据挖掘·ocr
我是哈哈hh6 小时前
专题十八_动态规划_斐波那契数列模型_路径问题_算法专题详细总结
c++·算法·动态规划
_小柏_7 小时前
C/C++基础知识复习(15)
c语言·c++
_oP_i7 小时前
cmake could not find a package configuration file provided by “Microsoft.GSL“
c++