【机器学习】【贝叶斯算法】Python实现数据预处理实战演练(以购物数据为例)

python 复制代码
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
retail_shopping_basket = {'ID': [1, 2, 3, 4, 5, 6],
                          'Basket': [['Beer', 'Diaper', 'Pretzels', 'Chips', 'Aspirin'],
                                     ['Diaper', 'Beer', 'Chips', 'Lotion', 'Juice', 'BabyFood', 'Milk'],
                                     ['Soda', 'Chips', 'Milk'],
                                     ['Soup', 'Beer', 'Diaper', 'Milk', 'IceCream'],
                                     ['Soda', 'Coffee', 'Milk', 'Bread'],
                                     ['Beer', 'Chips']]
                          }
retail = pd.DataFrame(retail_shopping_basket)
retail = retail[['ID', 'Basket']]
pd.options.display.max_colwidth = 100
retail

日常中见到的购物数据往往是所购买的数据而不是全部数据

数据集中都是字符串组成的,需要转换成数值编码

将展示不需要的字段属性拿出来

python 复制代码
retail_id=retail.drop(columns=['Basket'])
retail_id

根据每个数据集特性找到其分割符,如该数据集中的分隔符为,

python 复制代码
retail_Basket=retail.Basket.str.join(',')
retail_Basket
python 复制代码
retail_Basket=retail_Basket.str.get_dummies(",")
###get_dummies()需要告知其分隔符    该函数主要用于进行数据处理
##列属性为所有出现的属性   出现了则该记录该属性为1
retail_Basket
python 复制代码
retail=retail_id.join(retail_Basket)##将无关项重新组合
retail

后续在选择频繁项集与确定规则时不需要其他无关属性

python 复制代码
frequent_itemsets_2=apriori(retail.drop(columns=['ID']),use_colnames=True)
##min_support默认为0.5
frequent_itemsets_2
python 复制代码
association_rules(frequent_itemsets_2,metric='lift')

lift值越大则相关性越强

相关推荐
java1234_小锋1 分钟前
【AI大模型面试题】假设你需要为一个资源有限的场景(如单张消费级GPU)部署一个百亿参数的大模型,你会考虑哪些技术来使其可行且高效?
人工智能
墨抒颖 msy.plus3 分钟前
如何构建现代Agent以OpenManus为例
python·ai编程
yun68539925 分钟前
ai相关技术了解之n8n简单练习及理解
人工智能·n8n
爆打维c8 分钟前
01BFS算法(例题:网格传送门旅游)
c语言·c++·python·算法·leetcode·广度优先
喵手11 分钟前
Python爬虫零基础入门【第六章:增量、去重、断点续爬·第3节】幂等去重:同一条数据反复跑也不会重复入库!
爬虫·python·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·增量、去重、断点续爬·幂等去重
Python毕设指南11 分钟前
基于深度学习的旅游推荐系统
python·深度学习·数据分析·django·毕业设计·课程设计
深蓝电商API16 分钟前
Selenium多窗口切换与Cookie管理
爬虫·python·selenium·测试工具
Python_Study202519 分钟前
工程材料企业如何通过智慧获客软件破解市场困局:方法论、架构与实践
大数据·网络·数据结构·人工智能·架构
紧固件研究社23 分钟前
紧固件制造设备基础知识大全
人工智能·制造·紧固件
DN202028 分钟前
AI销售机器人优质生产厂家
人工智能·机器人