【机器学习】【贝叶斯算法】Python实现数据预处理实战演练(以购物数据为例)

python 复制代码
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
retail_shopping_basket = {'ID': [1, 2, 3, 4, 5, 6],
                          'Basket': [['Beer', 'Diaper', 'Pretzels', 'Chips', 'Aspirin'],
                                     ['Diaper', 'Beer', 'Chips', 'Lotion', 'Juice', 'BabyFood', 'Milk'],
                                     ['Soda', 'Chips', 'Milk'],
                                     ['Soup', 'Beer', 'Diaper', 'Milk', 'IceCream'],
                                     ['Soda', 'Coffee', 'Milk', 'Bread'],
                                     ['Beer', 'Chips']]
                          }
retail = pd.DataFrame(retail_shopping_basket)
retail = retail[['ID', 'Basket']]
pd.options.display.max_colwidth = 100
retail

日常中见到的购物数据往往是所购买的数据而不是全部数据

数据集中都是字符串组成的,需要转换成数值编码

将展示不需要的字段属性拿出来

python 复制代码
retail_id=retail.drop(columns=['Basket'])
retail_id

根据每个数据集特性找到其分割符,如该数据集中的分隔符为,

python 复制代码
retail_Basket=retail.Basket.str.join(',')
retail_Basket
python 复制代码
retail_Basket=retail_Basket.str.get_dummies(",")
###get_dummies()需要告知其分隔符    该函数主要用于进行数据处理
##列属性为所有出现的属性   出现了则该记录该属性为1
retail_Basket
python 复制代码
retail=retail_id.join(retail_Basket)##将无关项重新组合
retail

后续在选择频繁项集与确定规则时不需要其他无关属性

python 复制代码
frequent_itemsets_2=apriori(retail.drop(columns=['ID']),use_colnames=True)
##min_support默认为0.5
frequent_itemsets_2
python 复制代码
association_rules(frequent_itemsets_2,metric='lift')

lift值越大则相关性越强

相关推荐
KG_LLM图谱增强大模型6 分钟前
知识图谱+大模型“驱动的生物制药企业下一代主数据管理:Neo4j知识图谱与GraphRAG及GenAI的深度整合
人工智能·大模型·知识图谱
DisonTangor8 分钟前
【DeepSeek拥抱开源】通过可扩展查找实现的条件记忆:大型语言模型稀疏性的新维度
人工智能·语言模型·自然语言处理
lkbhua莱克瓦249 分钟前
稠密、稀疏与MoE:大模型时代的三重架构革命
人工智能·深度学习·机器学习·ai·架构
反向跟单策略9 分钟前
期货反向跟单-贵金属牛市中的反向跟单密码
大数据·人工智能·学习·数据分析·区块链
K姐研究社10 分钟前
实测百度文库AI PPT制作,一键排版美化生成专业PPT
人工智能·百度·powerpoint
万邦科技Lafite11 分钟前
阿里巴巴商品详情API返回值:电商精准营销的关键
大数据·数据库·人工智能·电商开放平台
做萤石二次开发的哈哈14 分钟前
萤石开放平台 萤石可编程设备 | 设备脚本自定义开发
开发语言·python·萤石云·萤石·萤石开放平台
TMT星球16 分钟前
康迪科技携核心电动产品亮相AIMExpo,渠道拓展再提速
人工智能·科技
kingmax5421200817 分钟前
NOAI和IOAI竞赛学习路径
人工智能·学习·青少年编程
说私域18 分钟前
基于AI智能名片链动2+1模式服务预约小程序的旅拍消费需求激发路径研究
大数据·人工智能·小程序