【机器学习】【贝叶斯算法】Python实现数据预处理实战演练(以购物数据为例)

python 复制代码
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
retail_shopping_basket = {'ID': [1, 2, 3, 4, 5, 6],
                          'Basket': [['Beer', 'Diaper', 'Pretzels', 'Chips', 'Aspirin'],
                                     ['Diaper', 'Beer', 'Chips', 'Lotion', 'Juice', 'BabyFood', 'Milk'],
                                     ['Soda', 'Chips', 'Milk'],
                                     ['Soup', 'Beer', 'Diaper', 'Milk', 'IceCream'],
                                     ['Soda', 'Coffee', 'Milk', 'Bread'],
                                     ['Beer', 'Chips']]
                          }
retail = pd.DataFrame(retail_shopping_basket)
retail = retail[['ID', 'Basket']]
pd.options.display.max_colwidth = 100
retail

日常中见到的购物数据往往是所购买的数据而不是全部数据

数据集中都是字符串组成的,需要转换成数值编码

将展示不需要的字段属性拿出来

python 复制代码
retail_id=retail.drop(columns=['Basket'])
retail_id

根据每个数据集特性找到其分割符,如该数据集中的分隔符为,

python 复制代码
retail_Basket=retail.Basket.str.join(',')
retail_Basket
python 复制代码
retail_Basket=retail_Basket.str.get_dummies(",")
###get_dummies()需要告知其分隔符    该函数主要用于进行数据处理
##列属性为所有出现的属性   出现了则该记录该属性为1
retail_Basket
python 复制代码
retail=retail_id.join(retail_Basket)##将无关项重新组合
retail

后续在选择频繁项集与确定规则时不需要其他无关属性

python 复制代码
frequent_itemsets_2=apriori(retail.drop(columns=['ID']),use_colnames=True)
##min_support默认为0.5
frequent_itemsets_2
python 复制代码
association_rules(frequent_itemsets_2,metric='lift')

lift值越大则相关性越强

相关推荐
小毛驴8504 分钟前
软件设计模式-装饰器模式
python·设计模式·装饰器模式
serve the people11 分钟前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
闲人编程24 分钟前
Python的导入系统:模块查找、加载和缓存机制
java·python·缓存·加载器·codecapsule·查找器
weixin_4577600030 分钟前
Python 数据结构
数据结构·windows·python
0***K89232 分钟前
前端机器学习
人工智能·机器学习
陈天伟教授36 分钟前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108241 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy10111 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里1 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算