机器学习5-线性回归之损失函数

线性回归 中,我们通常使用最小二乘法 (Ordinary Least Squares, OLS)来求解损失函数 。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。

假设有数据集 其中 是输入特征, 是对应的输出。

线性回归的模型假设是:

其中, 是输入特征, 是模型的参数。

损失函数(成本函数)表示预测值与实际值之间的差异。对于线性回归,损失函数通常采用均方误差(Mean Squared Error, MSE):

其中 是数据集中的样本数量

求解损失函数的过程就是找到能够使损失函数最小化的模型参数 。我们通过最小化损失函数来找到最优的参数。这可以通过梯度下降等优化算法来实现。梯度下降的步骤如下:

  1. 初始化参数:选择一组初始参数 .

  2. 计算梯度:计算损失函数对每个参数的偏导数。

  3. 更新参数:使用梯度信息来更新参数,减小损失函数值。

  4. 重复步骤2和步骤3:直到收敛或达到预定的迭代次数。

对于线性回归的梯度下降算法,参数的更新规则为:

其中 是学习率,控制每次参数更新的步长。

在具体的计算中,求解偏导数 并代入梯度下降公式进行迭代,直到损失函数收敛到最小值。


下面是对损失函数的偏导数计算过程:

均方误差损失函数:

现在,我们将 展开并对每个 求偏导数。

首先,计算单个样本的损失:

然后,对 求偏导数:

现在,我们对 求偏导数:

将其代入损失函数的偏导数中:


这就是对于线性回归的均方误差损失函数的偏导数计算过程。在实际应用中,梯度下降算法会根据这些偏导数的信息,迭代更新参数,直至损失函数收敛到最小值。

结论:

以上就是线性回归中求解损失函数的基本过程。这个过程是通过迭代优化算法来找到最优参数,使得模型的预测值与实际值之间的均方误差最小。

相关推荐
自可乐1 小时前
LangGraph从入门到精通:构建智能Agent的完整指南
人工智能·python·机器学习
jay神1 小时前
森林火灾检测数据集
算法·机器学习·目标跟踪
Cemtery1161 小时前
Day40 早停策略和模型权重的保存
人工智能·python·深度学习·机器学习
Christo33 小时前
TKDE-2026《Efficient Co-Clustering via Bipartite Graph Factorization》
人工智能·算法·机器学习·数据挖掘
明月照山海-4 小时前
机器学习周报三十三
人工智能·机器学习
毕设源码-钟学长5 小时前
【开题答辩全过程】以 基于协同过滤推荐算法的小说漫画网站设计与实现为例,包含答辩的问题和答案
算法·机器学习·推荐算法
渡我白衣5 小时前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
【赫兹威客】浩哥5 小时前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习
Yeats_Liao5 小时前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
大山同学14 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉