机器学习5-线性回归之损失函数

线性回归 中,我们通常使用最小二乘法 (Ordinary Least Squares, OLS)来求解损失函数 。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。

假设有数据集 其中 是输入特征, 是对应的输出。

线性回归的模型假设是:

其中, 是输入特征, 是模型的参数。

损失函数(成本函数)表示预测值与实际值之间的差异。对于线性回归,损失函数通常采用均方误差(Mean Squared Error, MSE):

其中 是数据集中的样本数量

求解损失函数的过程就是找到能够使损失函数最小化的模型参数 。我们通过最小化损失函数来找到最优的参数。这可以通过梯度下降等优化算法来实现。梯度下降的步骤如下:

  1. 初始化参数:选择一组初始参数 .

  2. 计算梯度:计算损失函数对每个参数的偏导数。

  3. 更新参数:使用梯度信息来更新参数,减小损失函数值。

  4. 重复步骤2和步骤3:直到收敛或达到预定的迭代次数。

对于线性回归的梯度下降算法,参数的更新规则为:

其中 是学习率,控制每次参数更新的步长。

在具体的计算中,求解偏导数 并代入梯度下降公式进行迭代,直到损失函数收敛到最小值。


下面是对损失函数的偏导数计算过程:

均方误差损失函数:

现在,我们将 展开并对每个 求偏导数。

首先,计算单个样本的损失:

然后,对 求偏导数:

现在,我们对 求偏导数:

将其代入损失函数的偏导数中:


这就是对于线性回归的均方误差损失函数的偏导数计算过程。在实际应用中,梯度下降算法会根据这些偏导数的信息,迭代更新参数,直至损失函数收敛到最小值。

结论:

以上就是线性回归中求解损失函数的基本过程。这个过程是通过迭代优化算法来找到最优参数,使得模型的预测值与实际值之间的均方误差最小。

相关推荐
少林码僧14 分钟前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归
春日见18 分钟前
控制算法:PP(纯跟踪)算法
linux·人工智能·驱动开发·算法·机器学习
Yeats_Liao31 分钟前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
gorgeous(๑>؂<๑)38 分钟前
【中科院-张启超组-AAAI26】WorldRFT: 用于自动驾驶的带强化微调的潜在世界模型规划
人工智能·机器学习·自动驾驶
高洁012 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
小兔崽子去哪了5 小时前
机器学习,梯度下降,拟合,正则化,混淆矩阵
python·机器学习
双翌视觉6 小时前
深入解析远心镜头的工作原理与选型
人工智能·数码相机·机器学习
摆烂咸鱼~7 小时前
机器学习(12)
人工智能·机器学习
liu****7 小时前
机器学习-特征降维
人工智能·python·机器学习·python基础·特征降维
Blossom.1188 小时前
联邦迁移学习实战:在数据孤岛中构建个性化推荐模型
开发语言·人工智能·python·深度学习·神经网络·机器学习·迁移学习