机器学习5-线性回归之损失函数

线性回归 中,我们通常使用最小二乘法 (Ordinary Least Squares, OLS)来求解损失函数 。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。

假设有数据集 其中 是输入特征, 是对应的输出。

线性回归的模型假设是:

其中, 是输入特征, 是模型的参数。

损失函数(成本函数)表示预测值与实际值之间的差异。对于线性回归,损失函数通常采用均方误差(Mean Squared Error, MSE):

其中 是数据集中的样本数量

求解损失函数的过程就是找到能够使损失函数最小化的模型参数 。我们通过最小化损失函数来找到最优的参数。这可以通过梯度下降等优化算法来实现。梯度下降的步骤如下:

  1. 初始化参数:选择一组初始参数 .

  2. 计算梯度:计算损失函数对每个参数的偏导数。

  3. 更新参数:使用梯度信息来更新参数,减小损失函数值。

  4. 重复步骤2和步骤3:直到收敛或达到预定的迭代次数。

对于线性回归的梯度下降算法,参数的更新规则为:

其中 是学习率,控制每次参数更新的步长。

在具体的计算中,求解偏导数 并代入梯度下降公式进行迭代,直到损失函数收敛到最小值。


下面是对损失函数的偏导数计算过程:

均方误差损失函数:

现在,我们将 展开并对每个 求偏导数。

首先,计算单个样本的损失:

然后,对 求偏导数:

现在,我们对 求偏导数:

将其代入损失函数的偏导数中:


这就是对于线性回归的均方误差损失函数的偏导数计算过程。在实际应用中,梯度下降算法会根据这些偏导数的信息,迭代更新参数,直至损失函数收敛到最小值。

结论:

以上就是线性回归中求解损失函数的基本过程。这个过程是通过迭代优化算法来找到最优参数,使得模型的预测值与实际值之间的均方误差最小。

相关推荐
Moshow郑锴9 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
C++、Java和Python的菜鸟10 小时前
第六章 统计初步
算法·机器学习·概率论
Jina AI13 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
试剂界的爱马仕17 小时前
胶质母细胞瘤对化疗的敏感性由磷脂酰肌醇3-激酶β选择性调控
人工智能·科技·算法·机器学习·ai写作
AI波克布林18 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
张子夜 iiii18 小时前
机器学习算法系列专栏:主成分分析(PCA)降维算法(初学者)
人工智能·python·算法·机器学习
Blossom.11818 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
2502_9271612820 小时前
DAY 40 训练和测试的规范写法
人工智能·深度学习·机器学习
赵英英俊21 小时前
Python day46
python·深度学习·机器学习
Monkey PilotX21 小时前
机器人“ChatGPT 时刻”倒计时
人工智能·机器学习·计算机视觉·自动驾驶