机器学习5-线性回归之损失函数

线性回归 中,我们通常使用最小二乘法 (Ordinary Least Squares, OLS)来求解损失函数 。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。

假设有数据集 其中 是输入特征, 是对应的输出。

线性回归的模型假设是:

其中, 是输入特征, 是模型的参数。

损失函数(成本函数)表示预测值与实际值之间的差异。对于线性回归,损失函数通常采用均方误差(Mean Squared Error, MSE):

其中 是数据集中的样本数量

求解损失函数的过程就是找到能够使损失函数最小化的模型参数 。我们通过最小化损失函数来找到最优的参数。这可以通过梯度下降等优化算法来实现。梯度下降的步骤如下:

  1. 初始化参数:选择一组初始参数 .

  2. 计算梯度:计算损失函数对每个参数的偏导数。

  3. 更新参数:使用梯度信息来更新参数,减小损失函数值。

  4. 重复步骤2和步骤3:直到收敛或达到预定的迭代次数。

对于线性回归的梯度下降算法,参数的更新规则为:

其中 是学习率,控制每次参数更新的步长。

在具体的计算中,求解偏导数 并代入梯度下降公式进行迭代,直到损失函数收敛到最小值。


下面是对损失函数的偏导数计算过程:

均方误差损失函数:

现在,我们将 展开并对每个 求偏导数。

首先,计算单个样本的损失:

然后,对 求偏导数:

现在,我们对 求偏导数:

将其代入损失函数的偏导数中:


这就是对于线性回归的均方误差损失函数的偏导数计算过程。在实际应用中,梯度下降算法会根据这些偏导数的信息,迭代更新参数,直至损失函数收敛到最小值。

结论:

以上就是线性回归中求解损失函数的基本过程。这个过程是通过迭代优化算法来找到最优参数,使得模型的预测值与实际值之间的均方误差最小。

相关推荐
艾派森2 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
忘梓.1 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
Chef_Chen1 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
MarkHD2 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习
打羽毛球吗️2 小时前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
小馒头学python3 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
正义的彬彬侠3 小时前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
羊小猪~~3 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
正义的彬彬侠4 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn