现学现用,使用 Pandas 对上证指数历史数据进行探索性数据分析(EDA)

现学现用,使用 Pandas 对上证指数历史数据进行探索性数据分析(EDA)

探索性数据分析(Exploratory Data Analysis,简称 EDA)是数据科学中的重要步骤之一,通过对数据的初步探索,揭示数据的分布、趋势和异常。本文将以上证指数为例,使用 Python 中的 Pandas 库进行探索性数据分析,展示 Pandas 在金融数据分析中的应用。

本文参考了《时间序列分析实战:基于机器学习和统计学》一书的3.1.1节和3.1.2节。

(🧧领优惠券购买本书)

数据获取

首先,我们需要获取上证指数的历史数据。

比如我们可以从 cn.investing.com/indices/sha... 下载CSV格式的上证指数的历史数据。

python 复制代码
import matplotlib.pyplot as plt
import pandas as pd

# 将 `上证指数历史数据.csv` 转换为 Pandas 的 DataFrame
df = pd.read_csv('上证指数历史数据.csv')

# 显示数据的前几行
print(df.head())
bash 复制代码
          日期        收盘        开盘         高         低     交易量     涨跌幅
0   2024-2-2  2,730.15  2,773.29  2,791.68  2,666.33  42.62B  -1.46%
1   2024-2-1  2,770.74  2,773.42  2,805.01  2,752.78  35.29B  -0.64%
2  2024-1-31  2,788.55  2,815.50  2,834.01  2,782.59  37.71B  -1.48%
3  2024-1-30  2,830.53  2,866.28  2,881.35  2,829.25  33.57B  -1.83%
4  2024-1-29  2,883.36  2,910.61  2,923.90  2,883.33  41.06B  -0.92%

在进行探索性数据分析之前,我们通常需要对数据进行清洗和整理。

python 复制代码
# 将字符串形式的"收盘价"转换为小数类型
df['收盘'] = df['收盘'].str.replace(',', '').astype(float)

# 将字符串形式的"日期"转换为日期类型
df['日期'] = pd.to_datetime(df['日期'])

接下来,我们分别用折线图和直方图可视化开盘价随时间的变化。

python 复制代码
# 绘制折线图
df.plot(x='日期', y='收盘')
plt.show()
python 复制代码
# 绘制直方图
df['收盘'].hist(bins=30)
plt.show()

在分析时间序列时(尤其是在金融领域),带有趋势的数据不会产生非常有用的可视化结果。

但如果我们计算上证历史数据中前后时间点开盘价的差值(今日和昨日开盘价的差值),并绘制差值的直方图,就会得到一个正态分布。

python 复制代码
df['收盘'].diff().hist(bins=30)
plt.show()

原始数据的直方图非常宽,并未呈现出正态分布。但我们对数据进行差分计算之后,数据就被转换成正态分布了。

在进行时间序列分析时,对差分数据绘制直方图得到的结果通常更有趣。

我们通过直方图从差分后的序列中获得了新的信息。虽然上证指数的折线图描绘了某种经济前景,似乎股票还在跌,但没准、可能、也许差分数据的直方图更接近股民的日常体验。

差分数据的直方图告诉我们,时间序列的值在一段时间内上升(正值)和下降(负值)的幅度大体相同。但整体而言,股票指数的涨跌幅度并不完全相同,这一点可以通过计算偏度(skewness)来衡量。

python 复制代码
print(df['收盘'].skew())
# -0.21625010453647112
# 偏度为正:分布右偏,尾部延伸到右侧。大部分数据位于均值左侧,分布的右侧有一些较大的极端值。
# 偏度为负:分布左偏,尾部延伸到左侧。大部分数据位于均值右侧,分布的左侧有一些较小的极端值。

本文演示了如何使用 Pandas 对上证指数历史数据进行探索性数据分析。当然,EDA 的具体内容和深度取决于具体的研究问题和数据特点。希望通过这个示例,你能够初步掌握 Pandas 在金融数据分析中的应用,为后续深入研究提供基础。

相关推荐
Juchecar1 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户8356290780511 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_1 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
RestCloud1 小时前
数据传输中的三大难题,ETL 平台是如何解决的?
数据分析·api
数据智能老司机8 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机9 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机9 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机9 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i9 小时前
drf初步梳理
python·django
每日AI新事件9 小时前
python的异步函数
python