现学现用,使用 Pandas 对上证指数历史数据进行探索性数据分析(EDA)

现学现用,使用 Pandas 对上证指数历史数据进行探索性数据分析(EDA)

探索性数据分析(Exploratory Data Analysis,简称 EDA)是数据科学中的重要步骤之一,通过对数据的初步探索,揭示数据的分布、趋势和异常。本文将以上证指数为例,使用 Python 中的 Pandas 库进行探索性数据分析,展示 Pandas 在金融数据分析中的应用。

本文参考了《时间序列分析实战:基于机器学习和统计学》一书的3.1.1节和3.1.2节。

(🧧领优惠券购买本书)

数据获取

首先,我们需要获取上证指数的历史数据。

比如我们可以从 cn.investing.com/indices/sha... 下载CSV格式的上证指数的历史数据。

python 复制代码
import matplotlib.pyplot as plt
import pandas as pd

# 将 `上证指数历史数据.csv` 转换为 Pandas 的 DataFrame
df = pd.read_csv('上证指数历史数据.csv')

# 显示数据的前几行
print(df.head())
bash 复制代码
          日期        收盘        开盘         高         低     交易量     涨跌幅
0   2024-2-2  2,730.15  2,773.29  2,791.68  2,666.33  42.62B  -1.46%
1   2024-2-1  2,770.74  2,773.42  2,805.01  2,752.78  35.29B  -0.64%
2  2024-1-31  2,788.55  2,815.50  2,834.01  2,782.59  37.71B  -1.48%
3  2024-1-30  2,830.53  2,866.28  2,881.35  2,829.25  33.57B  -1.83%
4  2024-1-29  2,883.36  2,910.61  2,923.90  2,883.33  41.06B  -0.92%

在进行探索性数据分析之前,我们通常需要对数据进行清洗和整理。

python 复制代码
# 将字符串形式的"收盘价"转换为小数类型
df['收盘'] = df['收盘'].str.replace(',', '').astype(float)

# 将字符串形式的"日期"转换为日期类型
df['日期'] = pd.to_datetime(df['日期'])

接下来,我们分别用折线图和直方图可视化开盘价随时间的变化。

python 复制代码
# 绘制折线图
df.plot(x='日期', y='收盘')
plt.show()
python 复制代码
# 绘制直方图
df['收盘'].hist(bins=30)
plt.show()

在分析时间序列时(尤其是在金融领域),带有趋势的数据不会产生非常有用的可视化结果。

但如果我们计算上证历史数据中前后时间点开盘价的差值(今日和昨日开盘价的差值),并绘制差值的直方图,就会得到一个正态分布。

python 复制代码
df['收盘'].diff().hist(bins=30)
plt.show()

原始数据的直方图非常宽,并未呈现出正态分布。但我们对数据进行差分计算之后,数据就被转换成正态分布了。

在进行时间序列分析时,对差分数据绘制直方图得到的结果通常更有趣。

我们通过直方图从差分后的序列中获得了新的信息。虽然上证指数的折线图描绘了某种经济前景,似乎股票还在跌,但没准、可能、也许差分数据的直方图更接近股民的日常体验。

差分数据的直方图告诉我们,时间序列的值在一段时间内上升(正值)和下降(负值)的幅度大体相同。但整体而言,股票指数的涨跌幅度并不完全相同,这一点可以通过计算偏度(skewness)来衡量。

python 复制代码
print(df['收盘'].skew())
# -0.21625010453647112
# 偏度为正:分布右偏,尾部延伸到右侧。大部分数据位于均值左侧,分布的右侧有一些较大的极端值。
# 偏度为负:分布左偏,尾部延伸到左侧。大部分数据位于均值右侧,分布的左侧有一些较小的极端值。

本文演示了如何使用 Pandas 对上证指数历史数据进行探索性数据分析。当然,EDA 的具体内容和深度取决于具体的研究问题和数据特点。希望通过这个示例,你能够初步掌握 Pandas 在金融数据分析中的应用,为后续深入研究提供基础。

相关推荐
酷飞飞6 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
大数据CLUB7 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
数字化顾问7 小时前
Python:OpenCV 教程——从传统视觉到深度学习:YOLOv8 与 OpenCV DNN 模块协同实现工业缺陷检测
python
学生信的大叔8 小时前
【Python自动化】Ubuntu24.04配置Selenium并测试
python·selenium·自动化
诗句藏于尽头9 小时前
Django模型与数据库表映射的两种方式
数据库·python·django
智数研析社10 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
扯淡的闲人10 小时前
多语言编码Agent解决方案(5)-IntelliJ插件实现
开发语言·python
moxiaoran575310 小时前
Flask学习笔记(一)
后端·python·flask
秋氘渔10 小时前
迭代器和生成器的区别与联系
python·迭代器·生成器·可迭代对象
Gu_shiwww10 小时前
数据结构8——双向链表
c语言·数据结构·python·链表·小白初步