机器学习_无监督学习之聚类

文章目录


介绍机器学习下的分类

以下介绍无监督学习之聚类

聚类是最常见的无监督学习算法。人有归纳和总结的能力,机器也有。聚类就是让机器把数据集中的样本按照特征的性质分组,这个过程中没有标签的存在。

聚类和监督学习中的分类问题有些类似,其主要区别在于:传统分类问题"概念化在前"。机器首先是学习概念,然后才能够做分类、做判断。

而聚类不同,虽然本质上也是"分类",但是"概念化在后"或者"不概念化",在给一堆数据分组时,没有任何此类、彼类的概念。

聚类也有好几种算法,K均值(K-means)是其中最常用的一种。

K均值算法

K均值算法是最容易理解的无监督学习算法。算法简单,速度也不差,但需要人工指定K值,也就是分成几个聚类。具体算法流程如下。

  • (1)首先确定K的数值,比如5个聚类,也叫5个簇。
  • (2)然后在一大堆数据中随机挑选K个数据点,作为簇的质心(centroid )。这些随机质心当然不完美,别着急,它们会慢慢变得完美。
  • (3)遍历集合中每一个数据点,计算它们与每一个质心的距离(比如欧氏距离)。数据点离哪个质心近,就属于哪一类。此时初始的K个类别开始形成。
  • (4)这时每一个质心中都聚集了很多数据点,于是质心说,你们来了,我就要"退役"了(这个是伟大的"禅让制度"啊!),选一个新的质心吧。然后计算出每一类中最靠近中心的点,作为新的质心。此时新的质心会比原来随机选的靠谱一些(等会儿用图展示质心的移动)。
  • (5)重新进行步骤(3),计算所有数据点和新的质心的距离,在新的质心周围形成新的簇分配("吃瓜群众"随风飘摇,离谁近就跟谁)。
  • (6)重新进行步骤(4),继续选择更好的质心(一代一代地"禅让"下去)。
  • (7)一直重复进行步骤(5)和(6),不断更新簇中的数据点,不断找到新的质心,直至收敛。

通过下面这个图,可以看到聚类中质心的移动和簇形成的过程。

K值的选取:手肘法

直观的手肘法(elbow method )进行簇的数量的确定。手肘法是基于对聚类效果的一个度量指标来实现的,这个指标也可以视为一种损失。在K值很小的时候,整体损失很大,而随着K值的增大,损失函数的值会在逐渐收敛之前出现一个拐点。此时的K值就是比较好的值。

大家看下面的图,损失随着簇的个数而收敛的曲线有点像只手臂,最佳K值的点像是手肘,因此取名为手肘法。

用聚类辅助理解营销数据

1.问题定义:为客户分组

(1)通过这个数据集,理解K均值算法的基本实现流程。

(2)通过K均值算法,给客户分组,了解每类客户消费能力的差别。

2.数据读入

python 复制代码
import numpy as np # 导入NumPy
import pandas as pd # 导入pandas
import warnings
warnings.filterwarnings("ignore")

dataset = pd.read_csv('../数据集/Customers Cluster.csv')
dataset.head() # 显示一些数据

# 只针对两个特征进行聚类,以方便二维的展示
X= dataset.iloc[:, [2,4]].values

Spending Score:消费分数(归一化成一个0~1的分数)

3.聚类的拟合

下面尝试用不同的K值进行聚类的拟合:

python 复制代码
from sklearn.cluster import KMeans # 导入聚类模型
cost=[] # 初始化损失(距离)值
for i in range(1,11): # 尝试不同的K值
    kmeans = KMeans(n_clusters= i, init='k-means++', random_state=0)
    kmeans.fit(X) # 拟合模型
    cost.append(kmeans.inertia_) #inertia_是度量数据点到聚类中心的度量公式

4.绘制手肘图

python 复制代码
import matplotlib.pyplot as plt # 导入Matplotlib
import seaborn as sns  # 导入Seaborn
%matplotlib inline
# 绘制手肘图 
plt.plot(range(1,11), cost)
plt.title('The Elbow Method')
plt.xlabel('no of clusters')
plt.ylabel('Cost')
plt.show()

从手肘图上判断,肘部数字大概是3或4,我们选择4作为聚类个数

python 复制代码
# 构建聚类模型
kmeansmodel = KMeans(n_clusters= 4, init='k-means++') # 选择4作为聚类个数
y_kmeans= kmeansmodel.fit_predict(X) # 进行聚类的拟合和分类

5.把分好的聚类可视化

python 复制代码
# 把分好的聚类可视化
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
# plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Age')
plt.ylabel('Spending Score')
plt.legend()
plt.show()

这个客户的聚类问题就解决了。其中,黄色高亮的大点是聚类的质心,可以看到算法中的质心并不止一个。

贴近项目实战

可见 Python综合数据分析_RFM用户分组模型


学习机器学习的参考资料:

(1)书籍

利用Python进行数据分析

西瓜书

百面机器学习

机器学习实战

阿里云天池大赛赛题解析(机器学习篇)

白话机器学习中的数学

零基础学机器学习

图解机器学习算法

...

(2)机构

光环大数据

开课吧

极客时间

七月在线

深度之眼

贪心学院

拉勾教育

博学谷

...

相关推荐
fsnine3 小时前
机器学习——数据清洗
人工智能·机器学习
月盈缺3 小时前
学习嵌入式的第二十二天——数据结构——双向链表
数据结构·学习·链表
一车小面包3 小时前
逻辑回归 从0到1
算法·机器学习·逻辑回归
★YUI★5 小时前
学习游戏制作记录(制作系统与物品掉落系统)8.16
学习·游戏·ui·unity·c#
努力还债的学术吗喽5 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
Monkey的自我迭代6 小时前
机器学习总复习
人工智能·机器学习
2301_821919927 小时前
决策树8.19
算法·决策树·机器学习
龙腾亚太7 小时前
基于深度强化学习的无人机自主感知−规划−控制策略
机器学习·无人机·强化学习·深度强化学习
XIAO·宝8 小时前
机器学习--数据预处理
人工智能·机器学习·数据预处理
二向箔reverse9 小时前
机器学习算法核心总结
人工智能·算法·机器学习