PyTorch下,使用list放置模块,导致计算设备不一的报错

报错

在复现 Transformer 代码的训练阶段时,发生报错:

bash 复制代码
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

解决方案

通过next(linear.parameters()).device确定 model 已经在 cuda:0 上了,同时输入 model.forward()的张量也位于 cuda:0。输入的张量没什么好推敲的,于是考虑到模型具有多层结构,遂输出每层结构的设备信息,model.encoder -> model.encoder.sublayer[0] ··· ···

测试发现,model.encoder.sublayer[0] 之后的模块的设备信息均位于 cpu,原因是构造这部分模块时,由于需要多个相同的模块,使用了 list 来存放模块:

python 复制代码
# module: 需要深拷贝的模块
# n: 拷贝的次数
# return: 深拷贝后的模块列表
def clones(module, n: int) -> list:
    return [copy.deepcopy(module) for _ in range(n)]

显然 list 不支持 GPU,需要用 PyTorch 提供的代替:

python 复制代码
def clones(module, n: int):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])

ModuleList 把子模块存入列表,能像 Python 里普通的列表被索引,最重要的是能使内部的模块被正确注册,并对所有的 Module 方法可见。[Source]

成功解决!

相关环境

bash 复制代码
python                    3.11.7               he1021f5_0
pytorch                   2.1.2           py3.11_cuda12.1_cudnn8_0    
相关推荐
HyperAI超神经3 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
一瞬祈望6 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
阿正的梦工坊6 小时前
Kronecker积详解
人工智能·深度学习·机器学习
秃了也弱了。6 小时前
python实现定时任务:schedule库、APScheduler库
开发语言·python
Dfreedom.6 小时前
从 model(x) 到__call__:解密深度学习框架的设计基石
人工智能·pytorch·python·深度学习·call
weixin_425023006 小时前
Spring Boot 配置文件优先级详解
spring boot·后端·python
汤姆yu7 小时前
基于深度学习的水稻病虫害检测系统
人工智能·深度学习
小徐Chao努力7 小时前
【Langchain4j-Java AI开发】06-工具与函数调用
java·人工智能·python
无心水7 小时前
【神经风格迁移:全链路压测】33、全链路监控与性能优化最佳实践:Java+Python+AI系统稳定性保障的终极武器
java·python·性能优化
_codemonster8 小时前
BERT中的padding操作
人工智能·深度学习·bert