PyTorch下,使用list放置模块,导致计算设备不一的报错

报错

在复现 Transformer 代码的训练阶段时,发生报错:

bash 复制代码
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

解决方案

通过next(linear.parameters()).device确定 model 已经在 cuda:0 上了,同时输入 model.forward()的张量也位于 cuda:0。输入的张量没什么好推敲的,于是考虑到模型具有多层结构,遂输出每层结构的设备信息,model.encoder -> model.encoder.sublayer[0] ··· ···

测试发现,model.encoder.sublayer[0] 之后的模块的设备信息均位于 cpu,原因是构造这部分模块时,由于需要多个相同的模块,使用了 list 来存放模块:

python 复制代码
# module: 需要深拷贝的模块
# n: 拷贝的次数
# return: 深拷贝后的模块列表
def clones(module, n: int) -> list:
    return [copy.deepcopy(module) for _ in range(n)]

显然 list 不支持 GPU,需要用 PyTorch 提供的代替:

python 复制代码
def clones(module, n: int):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])

ModuleList 把子模块存入列表,能像 Python 里普通的列表被索引,最重要的是能使内部的模块被正确注册,并对所有的 Module 方法可见。[Source]

成功解决!

相关环境

bash 复制代码
python                    3.11.7               he1021f5_0
pytorch                   2.1.2           py3.11_cuda12.1_cudnn8_0    
相关推荐
Bear on Toilet3 小时前
Bug日记——实现“日期类”
开发语言·c++·bug
Direction_Wind4 小时前
flinksql bug : Max aggregate function does not support type: CHAR
bug
背太阳的牧羊人4 小时前
tokenizer.encode_plus,BERT类模型 和 Sentence-BERT 他们之间的区别与联系
人工智能·深度学习·bert
学算法的程霖4 小时前
TGRS | FSVLM: 用于遥感农田分割的视觉语言模型
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·遥感图像分类
小彭律师5 小时前
数字化工厂中央控制室驾驶舱系统架构文档
python
jzwei0236 小时前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
白熊1886 小时前
【计算机视觉】基于深度学习的实时情绪检测系统:emotion-detection项目深度解析
人工智能·深度学习·计算机视觉
old_power6 小时前
【Python】PDF文件处理(PyPDF2、borb、fitz)
python·pdf
测试开发Kevin6 小时前
从投入产出、效率、上手难易度等角度综合对比 pytest 和 unittest 框架
python·pytest
强化学习与机器人控制仿真6 小时前
Newton GPU 机器人仿真器入门教程(零)— NVIDIA、DeepMind、Disney 联合推出
开发语言·人工智能·python·stm32·深度学习·机器人·自动驾驶