PyTorch下,使用list放置模块,导致计算设备不一的报错

报错

在复现 Transformer 代码的训练阶段时,发生报错:

bash 复制代码
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

解决方案

通过next(linear.parameters()).device确定 model 已经在 cuda:0 上了,同时输入 model.forward()的张量也位于 cuda:0。输入的张量没什么好推敲的,于是考虑到模型具有多层结构,遂输出每层结构的设备信息,model.encoder -> model.encoder.sublayer[0] ··· ···

测试发现,model.encoder.sublayer[0] 之后的模块的设备信息均位于 cpu,原因是构造这部分模块时,由于需要多个相同的模块,使用了 list 来存放模块:

python 复制代码
# module: 需要深拷贝的模块
# n: 拷贝的次数
# return: 深拷贝后的模块列表
def clones(module, n: int) -> list:
    return [copy.deepcopy(module) for _ in range(n)]

显然 list 不支持 GPU,需要用 PyTorch 提供的代替:

python 复制代码
def clones(module, n: int):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])

ModuleList 把子模块存入列表,能像 Python 里普通的列表被索引,最重要的是能使内部的模块被正确注册,并对所有的 Module 方法可见。[Source]

成功解决!

相关环境

bash 复制代码
python                    3.11.7               he1021f5_0
pytorch                   2.1.2           py3.11_cuda12.1_cudnn8_0    
相关推荐
qwerasda12385213 小时前
基于Faster-RCNN_R50_Caffe_FPN_1x_COCO的绿豆计数与识别系统深度学习Python代码实现
python·深度学习·caffe
程序员:钧念21 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路21 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
hele_two1 天前
快速幂算法
c++·python·算法
l1t1 天前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
哥布林学者1 天前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(二)词嵌入模型原理
深度学习·ai
Cemtery1161 天前
Day26 常见的降维算法
人工智能·python·算法·机器学习
星空椰1 天前
快速掌握FastAPI:高效构建Web API
python·fastapi
塔尖尖儿1 天前
Python中range()到底是什么演示
python