NLP_语言模型的雏形N-Gram

文章目录


N-Gram 模型

N-Gram 模型的构建过程如下:

1.将给定的文本分割成连续的N个词的组合(N-Gram)

比如,在Bigram 模型(2-Gram 模型,即二元模型)中,我们将文本分割成多个由相邻的两个词构成的组合,称它们为"二元组"(2-Gram )。

2.统计每个N-Gram在文本中出现的次数,也就是词频

比如,二元组"我爱"在语料库中出现了3次(如下页图所示),即这个二元组的词频为3。

3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时,下一个词出现的概率。这个概率可以通过计算某个N-Gram出现的次数与前N-1个词(前缀)出现的次数之比得到

比如,二元组"我爱"在语料库中出现了3次,而二元组的前缀"我"在语料库中出现了10次,则给定"我",下一个词为"爱"的概率为30%(如下图所示)。

4.可以使用这些概率来预测文本中下一个词出现的可能性。多次迭代这个过程,甚至可以生成整个句子,也可以算出每个句子在语料库中出现的概率

比如,从一个字"我",生成"爱",再继续生吃

成"吃",直到"我爱吃肉"这个句子。计算"我爱""爱吃""吃肉"出现的概率,然后乘以各自的条件概率,就可以得到这个句子在语料库中出现的概率了。如上图所示。

"词"是什么,如何"分词"

在N-Gram 模型中,它表示文本中的一个元素,"N-Gram"指长度为N的连续元素序列。

这里的"元素"在英文中可以指单词,也可以指字符,有时还可以指"子词"(Subword );而在中文中,可以指词或者短语,也可以指字。

一般的自然语言处理工具包都为我们提供好了分词的工具。比如,英文分词通常使用 NLTK、spaCy等自然语言处理库,中文分词通常使用jieba库(中文NLP工具包),而如果你将来会用到BERT这样的预训 I练模型,那么你就需要使用BERT 的专属分词器Tokenizer,它会把每个单词拆成子词一这是 BERT处理生词的方法。

创建一个Bigram字符预测模型

1.构建实验语料库

python 复制代码
# 构建一个数据集
corpus = ["小张每天喜欢学习",
          "小张周末喜欢徒步",
          "小李工作日喜欢加班",
          "小李周末喜欢爬山",
          "小张周末喜欢爬山",
          "小李不喜欢躺平"]

2.把句子分成N个Gram(分词)

python 复制代码
# 定义一个分词函数,将文本转换为单个字符的列表
def tokenize(text):
    return [char for char in text] # 将文本拆分为字符列表
# 对每个文本进行分词,并打印出对应的单字列表
print("单字列表:") 
for text in corpus:
    tokens = tokenize(text)
    print(tokens)

3.计算每个Bigram在语料库中的词频

python 复制代码
# 定义计算 N-Gram 词频的函数
from collections import defaultdict, Counter # 导入所需库
def count_ngrams(corpus, n):
    ngrams_count = defaultdict(Counter)  # 创建一个字典,存储 N-Gram 计数
    for text in corpus:  # 遍历语料库中的每个文本
        tokens = tokenize(text)  # 对文本进行分词
        for i in range(len(tokens) - n + 1):  # 遍历分词结果,生成 N-Gram
            ngram = tuple(tokens[i:i+n])  # 创建一个 N-Gram 元组
            prefix = ngram[:-1]  # 获取 N-Gram 的前缀
            token = ngram[-1]  # 获取 N-Gram 的目标单字
            ngrams_count[prefix][token] += 1  # 更新 N-Gram 计数
    return ngrams_count
bigram_counts = count_ngrams(corpus, 2) # 计算 bigram 词频
print("bigram 词频:") # 打印 bigram 词频
for prefix, counts in bigram_counts.items():
    print("{}: {}".format("".join(prefix), dict(counts))) 

4.计算每个Bigram的出现概率

python 复制代码
# 定义计算 N-Gram 出现概率的函数
def ngram_probabilities(ngram_counts):
    ngram_probs = defaultdict(Counter) # 创建一个字典,存储 N-Gram 出现的概率
    for prefix, tokens_count in ngram_counts.items(): # 遍历 N-Gram 前缀
        total_count = sum(tokens_count.values()) # 计算当前前缀的 N-Gram 计数
        for token, count in tokens_count.items(): # 遍历每个前缀的 N-Gram
            ngram_probs[prefix][token] = count / total_count # 计算每个 N-Gram 出现的概率
    return ngram_probs
bigram_probs = ngram_probabilities(bigram_counts) # 计算 bigram 出现的概率
print("\nbigram 出现的概率 :") # 打印 bigram 概率
for prefix, probs in bigram_probs.items():
    print("{}: {}".format("".join(prefix), dict(probs)))

5.根据Bigram出现的概率,定义生成下一个词的函数

python 复制代码
# 定义生成下一个词的函数
def generate_next_token(prefix, ngram_probs):
    if not prefix in ngram_probs: # 如果前缀不在 N-Gram 中,返回 None
        return None
    next_token_probs = ngram_probs[prefix] # 获取当前前缀的下一个词的概率
    next_token = max(next_token_probs, 
                    key=next_token_probs.get) # 选择概率最大的词作为下一个词
    return next_token

6.输入一个前缀,生成连续文本

python 复制代码
# 定义生成连续文本的函数
def generate_text(prefix, ngram_probs, n, length=8):
    tokens = list(prefix) # 将前缀转换为字符列表
    for _ in range(length - len(prefix)): # 根据指定长度生成文本 
    # 获取当前前缀的下一个词
        next_token = generate_next_token(tuple(tokens[-(n-1):]), ngram_probs) 
        if not next_token: # 如果下一个词为 None,跳出循环
            break
        tokens.append(next_token) # 将下一个词添加到生成的文本中
    return "".join(tokens) # 将字符列表连接成字符串
python 复制代码
# 输入一个前缀,生成文本
generated_text = generate_text("小", bigram_probs, 2)
print("\n 生成的文本:", generated_text) # 打印生成的文本

学习的参考资料:

(1)书籍

利用Python进行数据分析

西瓜书

百面机器学习

机器学习实战

阿里云天池大赛赛题解析(机器学习篇)

白话机器学习中的数学

零基础学机器学习

图解机器学习算法

动手学深度学习(pytorch)

...

(2)机构

光环大数据

开课吧

极客时间

七月在线

深度之眼

贪心学院

拉勾教育

博学谷

慕课网

海贼宝藏

...

相关推荐
普密斯科技14 分钟前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐27 分钟前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu13628 分钟前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
日出等日落41 分钟前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
三木吧1 小时前
开发微信小程序的过程与心得
人工智能·微信小程序·小程序
whaosoft-1431 小时前
w~视觉~3D~合集5
人工智能
猫头虎1 小时前
新纪天工 开物焕彩:重大科技成就发布会参会感
人工智能·开源·aigc·开放原子·开源软件·gpu算力·agi
正在走向自律2 小时前
京东物流营销 Agent:智能驱动,物流新篇(13/30)
人工智能·ai agent·ai智能体·京东物流agent
远洋录3 小时前
React性能优化实战:从理论到落地的最佳实践
前端·人工智能·react
KD3353 小时前
Marscode AI辅助编程
人工智能