机器学习之指数分布

指数分布: 指数分布可以用来表示独立随机事件发生的时间间隔 。如果一个随机变量X的概率密度函数满足以下形式,就称X服从参数λ的指数分布,记作X ~ E(λ)或X~Exp(λ)。指数分布只有一个指数参数,且λ>0,λ表示单位时间发生该事件的次数
f ( x ) = { λ e − λ e x > 0 0 其他 f(x)= \begin{cases} \lambda e^{-\lambda e} \quad x>0 \\ \\ 0 \quad 其他 \end{cases} f(x)=⎩ ⎨ ⎧λe−λex>00其他

指数分布的一个显著的特点是其具有无记忆性。指数分布是描述泊松过程中的事件之间的时间的概率 分布。

期望:1 λ \frac{1}{\lambda} λ1 方差:1 λ 2 \frac{1}{\lambda^2} λ21

python 复制代码
from scipy import stats
import matplotlib.pyplot as plt
def expon(loc=8,scale=5):
 #按照定义,指数分布只有一个参数lambda,scale=1/lambda
 #loc定义域的左端点,相当于整体分布沿x轴平移loc
 #scale是lambda的倒数,loc+scale表示分布均值,scale^2表示该分布的方差
 expon_dist=stats.expon(loc=loc,scale=scale)
 x=np.arange(expon_dist.ppf(0.0001),expon_dist.ppf(0.9999))
 fig,ax=plt.subplots(1,1)
 ax.plot(x,expon_dist.pdf(x),label='Expon PDF')
 #ax.vlines(x,0,uniform_dist.pdf(x),colors='b',lw=5,alpha=0.5)
 ax.legend(loc='best',frameon=False)
 plt.ylabel('Probability')
 plt.title('PDF of Poisson Expon(loc={},scale={})'.format(loc,scale))
 plt.show()
expon()

相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz6 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子6 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor