机器学习之指数分布

指数分布: 指数分布可以用来表示独立随机事件发生的时间间隔 。如果一个随机变量X的概率密度函数满足以下形式,就称X服从参数λ的指数分布,记作X ~ E(λ)或X~Exp(λ)。指数分布只有一个指数参数,且λ>0,λ表示单位时间发生该事件的次数
f ( x ) = { λ e − λ e x > 0 0 其他 f(x)= \begin{cases} \lambda e^{-\lambda e} \quad x>0 \\ \\ 0 \quad 其他 \end{cases} f(x)=⎩ ⎨ ⎧λe−λex>00其他

指数分布的一个显著的特点是其具有无记忆性。指数分布是描述泊松过程中的事件之间的时间的概率 分布。

期望:1 λ \frac{1}{\lambda} λ1 方差:1 λ 2 \frac{1}{\lambda^2} λ21

python 复制代码
from scipy import stats
import matplotlib.pyplot as plt
def expon(loc=8,scale=5):
 #按照定义,指数分布只有一个参数lambda,scale=1/lambda
 #loc定义域的左端点,相当于整体分布沿x轴平移loc
 #scale是lambda的倒数,loc+scale表示分布均值,scale^2表示该分布的方差
 expon_dist=stats.expon(loc=loc,scale=scale)
 x=np.arange(expon_dist.ppf(0.0001),expon_dist.ppf(0.9999))
 fig,ax=plt.subplots(1,1)
 ax.plot(x,expon_dist.pdf(x),label='Expon PDF')
 #ax.vlines(x,0,uniform_dist.pdf(x),colors='b',lw=5,alpha=0.5)
 ax.legend(loc='best',frameon=False)
 plt.ylabel('Probability')
 plt.title('PDF of Poisson Expon(loc={},scale={})'.format(loc,scale))
 plt.show()
expon()

相关推荐
淮雵的Blog几秒前
langGraph通俗易懂的解释、langGraph和使用API直接调用LLM的区别
人工智能
Mintopia4 分钟前
🚀 共绩算力:3分钟拥有自己的文生图AI服务-容器化部署 StableDiffusion1.5-WebUI 应用
前端·人工智能·aigc
HPC_C11 分钟前
SGLang: Efficient Execution of Structured Language Model Programs
人工智能·语言模型·自然语言处理
王哈哈^_^19 分钟前
【完整源码+数据集】草莓数据集,yolov8草莓成熟度检测数据集 3207 张,草莓成熟度数据集,目标检测草莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
songyuc36 分钟前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉
码界奇点1 小时前
解密AI语言模型从原理到应用的全景解析
人工智能·语言模型·自然语言处理·架构
余衫马1 小时前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体
pingao1413781 小时前
冰雪环境无忧测:冬季加热激光雪深监测站保障道路安全与气象研究
人工智能·安全
AndrewHZ1 小时前
【图像处理基石】提升图像通透感:从原理到实操的完整指南
图像处理·人工智能·计算机视觉·cv·对比度·动态范围·通透感
草莓熊Lotso1 小时前
C++ 方向 Web 自动化测试实战:以博客系统为例,从用例到报告全流程解析
前端·网络·c++·人工智能·后端·python·功能测试