机器学习之指数分布

指数分布: 指数分布可以用来表示独立随机事件发生的时间间隔 。如果一个随机变量X的概率密度函数满足以下形式,就称X服从参数λ的指数分布,记作X ~ E(λ)或X~Exp(λ)。指数分布只有一个指数参数,且λ>0,λ表示单位时间发生该事件的次数
f ( x ) = { λ e − λ e x > 0 0 其他 f(x)= \begin{cases} \lambda e^{-\lambda e} \quad x>0 \\ \\ 0 \quad 其他 \end{cases} f(x)=⎩ ⎨ ⎧λe−λex>00其他

指数分布的一个显著的特点是其具有无记忆性。指数分布是描述泊松过程中的事件之间的时间的概率 分布。

期望:1 λ \frac{1}{\lambda} λ1 方差:1 λ 2 \frac{1}{\lambda^2} λ21

python 复制代码
from scipy import stats
import matplotlib.pyplot as plt
def expon(loc=8,scale=5):
 #按照定义,指数分布只有一个参数lambda,scale=1/lambda
 #loc定义域的左端点,相当于整体分布沿x轴平移loc
 #scale是lambda的倒数,loc+scale表示分布均值,scale^2表示该分布的方差
 expon_dist=stats.expon(loc=loc,scale=scale)
 x=np.arange(expon_dist.ppf(0.0001),expon_dist.ppf(0.9999))
 fig,ax=plt.subplots(1,1)
 ax.plot(x,expon_dist.pdf(x),label='Expon PDF')
 #ax.vlines(x,0,uniform_dist.pdf(x),colors='b',lw=5,alpha=0.5)
 ax.legend(loc='best',frameon=False)
 plt.ylabel('Probability')
 plt.title('PDF of Poisson Expon(loc={},scale={})'.format(loc,scale))
 plt.show()
expon()

相关推荐
人工智能AI技术4 分钟前
GitHub Copilot免费替代方案:大学生如何用CodeGeeX+通义灵码搭建AI编程环境
人工智能
Chunyyyen6 分钟前
【第三十四周】视觉RAG01
人工智能·chatgpt
是枚小菜鸡儿吖7 分钟前
CANN 算子开发黑科技:AI 自动生成高性能 Kernel 代码
人工智能·科技
hqyjzsb13 分钟前
盲目用AI提效?当心陷入“工具奴”陷阱,效率不增反降
人工智能·学习·职场和发展·创业创新·学习方法·业界资讯·远程工作
Eloudy20 分钟前
用 Python 直写 CUDA Kernel的技术,CuTile、TileLang、Triton 与 PyTorch 的深度融合实践
人工智能·pytorch
神的泪水21 分钟前
CANN 实战全景篇:从零构建 LLM 推理引擎(基于 CANN 原生栈)
人工智能
yuanyuan2o222 分钟前
【深度学习】全连接、卷积神经网络
人工智能·深度学习·cnn
八零后琐话27 分钟前
干货:Claude最新大招Cowork避坑!
人工智能
汗流浃背了吧,老弟!1 小时前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习