机器学习之指数分布

指数分布: 指数分布可以用来表示独立随机事件发生的时间间隔 。如果一个随机变量X的概率密度函数满足以下形式,就称X服从参数λ的指数分布,记作X ~ E(λ)或X~Exp(λ)。指数分布只有一个指数参数,且λ>0,λ表示单位时间发生该事件的次数
f ( x ) = { λ e − λ e x > 0 0 其他 f(x)= \begin{cases} \lambda e^{-\lambda e} \quad x>0 \\ \\ 0 \quad 其他 \end{cases} f(x)=⎩ ⎨ ⎧λe−λex>00其他

指数分布的一个显著的特点是其具有无记忆性。指数分布是描述泊松过程中的事件之间的时间的概率 分布。

期望:1 λ \frac{1}{\lambda} λ1 方差:1 λ 2 \frac{1}{\lambda^2} λ21

python 复制代码
from scipy import stats
import matplotlib.pyplot as plt
def expon(loc=8,scale=5):
 #按照定义,指数分布只有一个参数lambda,scale=1/lambda
 #loc定义域的左端点,相当于整体分布沿x轴平移loc
 #scale是lambda的倒数,loc+scale表示分布均值,scale^2表示该分布的方差
 expon_dist=stats.expon(loc=loc,scale=scale)
 x=np.arange(expon_dist.ppf(0.0001),expon_dist.ppf(0.9999))
 fig,ax=plt.subplots(1,1)
 ax.plot(x,expon_dist.pdf(x),label='Expon PDF')
 #ax.vlines(x,0,uniform_dist.pdf(x),colors='b',lw=5,alpha=0.5)
 ax.legend(loc='best',frameon=False)
 plt.ylabel('Probability')
 plt.title('PDF of Poisson Expon(loc={},scale={})'.format(loc,scale))
 plt.show()
expon()

相关推荐
踏浪无痕8 分钟前
架构师如何学习 AI:三个月掌握核心能力的务实路径
人工智能·后端·程序员
闲看云起16 分钟前
大模型应用开发框架全景图
人工智能·语言模型·ai编程
万行30 分钟前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
木卫四科技32 分钟前
DocETL 入门:让非结构化数据处理变得简单智能
人工智能·木卫四
玖日大大34 分钟前
OceanBase SeekDB:AI 原生数据库的技术革命与实践指南
数据库·人工智能·oceanbase
小润nature36 分钟前
Spec-Driven Development (SDD) 框架与开源 AI 智能体-意图的进化
人工智能·开源
后端小肥肠40 分钟前
复刻10W+爆款视频!我用Coze搭了个“人物故事”自动流水线,太香了!
人工智能·aigc·coze
轻竹办公PPT1 小时前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint
浔川python社1 小时前
【版本更新提示】浔川 AI 翻译 v6.0 合规优化版已上线
人工智能
清 澜1 小时前
c++高频知识点总结 第 1 章:语言基础与预处理
c++·人工智能·面试