Python 处理小样本数据的文档分类问题

在处理小样本数据的文档分类问题时,可以尝试使用迁移学习或者基于预训练模型的方法,如BERT、GPT等。然而,直接在这里编写一个完整的深度学习文档分类代码超出了这个平台的限制,但我可以为你提供一个基本的思路和简单示例,你可以根据这个思路进一步研究并实现。

python 复制代码
# 导入必要的库
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from torch.utils.data import Dataset, DataLoader

# 假设你已经有了预处理的数据,每个样本是一个dict,包含'id','text'和'label'
class DocumentDataset(Dataset):
    def __init__(self, data, tokenizer, max_len):
        self.data = data
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data[idx]['text']
        label = self.data[idx]['label']

        encoding = self.tokenizer.encode_plus(
            text,
            add_special_tokens=True,
            max_length=self.max_len,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt',
        )

        return {
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten(),
            'labels': torch.tensor(label, dtype=torch.long)
        }

# 初始化预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=NUM_CLASSES)  # NUM_CLASSES是你类别的数量

# 假设你已经加载了小量数据到data变量中
dataset = DocumentDataset(data, tokenizer, max_len=128)  # 调整max_len以适应你的需求
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE)  # BATCH_SIZE是批次大小

# 然后进行模型训练,这里仅展示训练循环的基本结构
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)  # 设置学习率

for epoch in range(NUM_EPOCHS):  # NUM_EPOCHS是训练轮数
    for batch in dataloader:
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        labels = batch['labels'].to(device)

        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss = outputs.loss
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

# 训练完成后,你可以用验证集或测试集评估模型性能

# 注意:由于数据量较小,过拟合的风险较高,可能需要采取正则化、早停法等策略来优化模型。

以上代码仅为示例,并未涵盖完整的工作流程,包括数据预处理、模型微调、模型评估与选择等步骤。在实际应用中,你还需要根据具体的数据格式和项目需求进行相应的调整。同时,对于小样本问题,也可以考虑采用数据增强、元学习等相关技术提高模型性能

相关推荐
aircrushin19 小时前
三分钟说清楚 ReAct Agent 的技术实现
人工智能
技术狂人16819 小时前
工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
人工智能·算法·面试·职场和发展·vllm
好奇龙猫20 小时前
【人工智能学习-AI入试相关题目练习-第三次】
人工智能
柳杉20 小时前
建议收藏 | 2026年AI工具封神榜:从Sora到混元3D,生产力彻底爆发
前端·人工智能·后端
狮子座明仔20 小时前
Engram:DeepSeek提出条件记忆模块,“查算分离“架构开启LLM稀疏性新维度
人工智能·深度学习·语言模型·自然语言处理·架构·记忆
阿湯哥20 小时前
AgentScope Java 集成 Spring AI Alibaba Workflow 完整指南
java·人工智能·spring
自学不成才20 小时前
深度复盘:一次flutter应用基于内存取证的黑盒加密破解实录并完善算法推理助手
c++·python·算法·数据挖掘
Java中文社群21 小时前
保姆级喂饭教程:什么是Skills?如何用Skills?
人工智能
2301_8002561121 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习