HiveSQL题——array_contains函数

目录

一、原创文章被引用次数

[0 问题描述](#0 问题描述)

[1 数据准备](#1 数据准备)

[2 数据分析](#2 数据分析)

​编辑

[3 小结](#3 小结)

二、学生退费人数

[0 问题描述](#0 问题描述)

[1 数据准备](#1 数据准备)

[2 数据分析](#2 数据分析)

[3 小结](#3 小结)

一、原创文章被引用次数

0 问题描述

求原创文章被引用的次数,注意本题不能用关联的形式求解。

1 数据准备

id表示文章id,oid表示引用的其他文章id,当oid为0时表示当前文章为原创文章。

sql 复制代码
create table if not exists  table18
(
    id    int comment '文章id',
    oid   int comment '引用的其他文章id'
) comment '文章信息表';

insert overwrite table table18 values
(1,0),
(2,0),
(3,1),
(4,1),
(5,2),
(6,0),
(7,3);

2 数据分析

题目要求的是原创文章被引用的次数,其中原创文章为oid等于0的文章,即求解文章id为【1,2,6】被引用的次数。常见的思路是用关联方式求解,具体SQL如下图所示:

**思路一:**用左连接 left join

sql 复制代码
--思路一:用左连接 left join 
select
    t1.id,
    count(t2.oid) as cnt
from (select * from table18 where oid = 0) t1
         left join
         (select * from table18 where oid <> 0) t2
         on t1.id = t2.oid
group by t1.id
order by t1.id;

输出结果为:

题意要求不能使用join等关联形式求解,其实该题本质是存在性计数问题

思路二: 借助array_contains(array,element) 函数

sql 复制代码
select
    new_id,
    sum(flag)as cnt
from (
         select
             id,
             oid,
             contains,
             -- 第二步:利用array_contains()函数判断引用的oid是否在原创文章id集合中,ture则记为1,false则记为0
             if(array_contains(contains, oid), 1, 0)    flag,
             -- 第三步:清洗数据,补充完整的原创文章
             if(array_contains(contains, oid), oid, if(oid = 0, id, null)) new_id
         from ( -- 第一步:构建原创文章id集合,作为辅助列
                  select
                      id,
                      oid,
                      collect_set(if(oid = 0, id, null)) over () contains
                  from table18
              ) tmp1
     ) tmp2
where new_id is not null
group by new_id;

上述代码解析:通过**array_contains(array,column)**函数进行存在性检测,如果array中包含column 则记为1,不存在记为0,关键公式:sum(if(array_contains(array,column),1,0))

上述代码解析:

**第一步:**构建原创文章id集合contains,将contains作为辅助列。

sql 复制代码
  select
        id,
        oid,
        collect_set(if(oid = 0, id, null)) over () contains
from table18;

第二步: 利用array_contains()函数,判断非原创的oid是否在原创文章id集合中,存在则计数为1,否则计数为0。

sql 复制代码
select
        id,
        oid,
        contains,
        if(array_contains(contains, oid), 1, 0) as flag
from ( 
         select
               id,
               oid,
               collect_set(if(oid = 0, id, null)) over () contains
          from table18
      ) tmp1;

**第三步:**清洗数据,对原创文章id补充完整

sql 复制代码
select
        id,
        oid,
        contains,
        if(array_contains(contains, oid), 1, 0)   flag,
      --清洗数据,对原创文章id补充完整
        if(array_contains(contains, oid), oid, if(oid = 0, id, null)) new_id
from ( 
          select
               id,
               oid,
               collect_set(if(oid = 0, id, null)) over () contains
          from table18
       ) tmp1;

ps: 此处需要对原创文章id补充完整,否则会丢失记录。具体是:通过array_contains(contains,oid)去判断,代码为if(array_contains(contains, oid), oid, if(oid = 0, id, null)) as new_id --> 代表的意思是**:**如果oid存在于原创文章id构建的集合中,就取得该oid,如果不存在,再判断oid是否为0,如果是0,则取得id,否则记为null。

**第四步:**将new_id 为null的数据滤掉,并对new_id分组,求出各原创文章被引用的次数sum(flag)as cnt

sql 复制代码
select
    new_id,
    sum(flag)as cnt
from (
         select
             id,
             oid,
             contains,
             -- 第二步:利用array_contains()函数判断引用的oid是否在原创文章id集合中,ture则记为1,false则记为0
             if(array_contains(contains, oid), 1, 0)    flag,
             -- 第三步:清洗数据,补充完整的原创文章id
             if(array_contains(contains, oid), oid, if(oid = 0, id, null)) new_id
         from ( -- 第一步:构建原创文章id集合,作为辅助列
                  select
                      id,
                      oid,
                      collect_set(if(oid = 0, id, null)) over () contains
                  from table18
              ) tmp1
     ) tmp2
  -- 第四步:将为null的数值过滤掉,并对new_id分组,求出各原创文章被引用的次数sum(flag)as cnt
where new_id is not null
group by new_id;

3 小结

上述例子中利用array_contains(array,column)进行存在性检测 ,如果存在则记为1,不存在则记为0,核心计算公式为 sum(if(array_contains(array,value),1,0))

二、学生退费人数

0 问题描述

求截止当前月 的学生退费总人数【当月的学生退费人数:上月存在,这月不存在的学生个数】。

1 数据准备

sql 复制代码
create table if not exists test19( dt string comment '日期',
stu_id string comment '学生id');

insert overwrite table test19
values ('2020-01-02','1001'),
       ('2020-01-02','1002'),
       ('2020-02-02','1001'),
       ('2020-02-02','1002'),
       ('2020-02-02','1003'),
       ('2020-02-02','1004'),
       ('2020-03-02','1001'),
       ('2020-03-02','1002'),
       ('2020-04-02','1005'),
       ('2020-05-02','1006');

2 数据分析

完整的代码如下:

sql 复制代码
select month,
      sum(month_cnt) over(order by month) as result
from(
    select month,
           lag(next_month_cnt,1,0) over(order by month) as month_cnt
    from(
        select distinct 
               t0.month as month,
               sum(if(!array_contains(t1.lead_stu_id_arr,t0.stu_id),1,0)) over(partition by t0.month) as next_month_cnt
        from
            (select 
                  date_format(dt,'yyyy-MM') as month,
                  stu_id
            from test19) t0
        left join
        (
            select month,
                   lead(stu_id_arr,1) over(order by month) as lead_stu_id_arr
            from(
                 select date_format(dt,'yyyy-MM') as month,
                        collect_list(stu_id) as stu_id_arr
                 from test19
                 group by date_format(dt,'yyyy-MM') 
                ) tmp1
        ) t1
        on t0.month = t1.month
    ) tmp2
) tmp3;

**第一步:**聚合每个月的stu_id,利用collect_list()函数(不去重)合并,具体sql如下:

sql 复制代码
select date_format(dt,'yyyy-MM') as month,
       collect_list(stu_id) as stu_id_arr
from test19
group by date_format(dt,'yyyy-MM') 

计算结果如下:

sql 复制代码
2020-01	[1001,1002]
2020-02	[1001,1002,1003,1004]
2020-03	[1001,1002]
2020-04	[1005]
2020-05	[1006]

**第二步:**按照月份排序,获取下一月合并之后的值,sql如下:

sql 复制代码
 select month,
        stu_id_arr,
        lead(stu_id_arr,1) over(order by month) as lead_stu_id_arr
from(
       select
                date_format(dt,'yyyy-MM') as month,
                collect_list(stu_id) as stu_id_arr
       from test19
       group by date_format(dt,'yyyy-MM')
     ) tmp1;

计算结果如下:

sql 复制代码
2020-01	[1001,1002]	[1001,1002,1003,1004]
2020-02	[1001,1002,1003,1004]	[1001,1002]
2020-03	[1001,1002]	[1005]
2020-04	[1005]	[1006]
2020-05	[1006]	NULL

ps: 总体思路是利用数组差集函数 求出差值集合 后,再利用size()求出具体的个数,最后sum聚合即可。hive中的数组函数array_contains可以实现这个需求,该函数表示在数组中查询某个元素是否存在 。在该题目中,借助此函数判断当月某个学生id是否在下月(数据集合 -->数组)中存在,如果存在就为0,不存在标记为1。

**第三步:**利用步骤2的结果与原表进行关联,获取当前学生id

sql 复制代码
select
    t0.*,
    t1.*
from (select
          date_format(dt, 'yyyy-MM') as month,
          stu_id
      from test19) t0
 left join ( select
                   month,
                   lead(stu_id_arr, 1) over (order by month) as lead_stu_id_arr
             from ( select
                          date_format(dt, 'yyyy-MM') as month,
                          collect_list(stu_id)       as stu_id_arr
                  from test19
                  group by date_format(dt, 'yyyy-MM')
                 ) tmp1
             ) t1
on t0.month = t1.month;

结果如下:

sql 复制代码
2020-01	1001	2020-01	[1001,1002,1003,1004]
2020-01	1002	2020-01	[1001,1002,1003,1004]
2020-02	1001	2020-02	[1001,1002]
2020-02	1002	2020-02	[1001,1002]
2020-02	1003	2020-02	[1001,1002]
2020-02	1004	2020-02	[1001,1002]
2020-03	1001	2020-03	[1005]
2020-03	1002	2020-03	[1005]
2020-04	1005	2020-04	[1006]
2020-05	1006	2020-05	NULL

第四步:利用array_contains()函数判断当月的stu_id是否在下个月array数组中,如果存在标记0,不存在标记1。具体sql如下:

sql 复制代码
        select t0.month,
               t0.stu_id,
              if(!array_contains(t1.lead_stu_id_arr,t0.stu_id),1,0) as flag
        from
            (select
                   date_format(dt,'yyyy-MM') as month,
                   stu_id
            from test19) t0
        left join
        (
            select month,
                   lead(stu_id_arr,1) over(order by month) as lead_stu_id_arr
            from(
                 select date_format(dt,'yyyy-MM') as month,
                        collect_list(stu_id) as stu_id_arr
                 from test19
                 group by date_format(dt,'yyyy-MM')
                ) tmp1
        ) t1
        on t0.month = t1.month

结果如下:

sql 复制代码
2020-01	1001	0
2020-01	1002	0
2020-02	1001	0
2020-02	1002	0
2020-02	1003	1
2020-02	1004	1
2020-03	1001	1
2020-03	1002	1
2020-04	1005	1
2020-05	1006	1

第五步: 基于步骤四的结果,按照月份分组,对flag求和,得到下个月的学生退费人数

sql 复制代码
select  distinct t0.month,
       -- 求解下个月的退费人数
        sum(if(!array_contains(t1.lead_stu_id_arr,t0.stu_id),1,0)) over(partition by t0.month) as next_month_cnt
from  (select
             date_format(dt,'yyyy-MM') as month,
             stu_id
       from test19) t0
left join
        ( select month,
                 lead(stu_id_arr,1) over(order by month) as lead_stu_id_arr
          from( select 
                        date_format(dt,'yyyy-MM') as month,
                        collect_list(stu_id) as stu_id_arr
                 from test19
                 group by date_format(dt,'yyyy-MM')
                ) tmp1
        ) t1
on t0.month = t1.month;

计算结果如下:

注意:第二列求是下个月的退费人数。

sql 复制代码
2020-01	0
2020-02	2
2020-03	2
2020-04	1

**第六步:**计算当前月的退费人数

步骤五计算的是下一个月的学生退费人数,再利用 lag(next_month_cnt,1,0) over(order by month) 向上偏移一行 ,就得到当前月的退费人数

sql代码如下:

sql 复制代码
select month, 
      --基于下月的退费人数month_cnt字段,向上偏移一行,就得到当前月的退费人数
       lag(next_month_cnt,1,0) over(order by month) as month_cnt
 from(
        select distinct t0.month as month,
               sum(if(!array_contains(t1.lead_stu_id_arr,t0.stu_id),1,0)) over(partition by t0.month) as next_month_cnt
        from
            (select
                  date_format(dt,'yyyy-MM') as month,
                  stu_id
            from test19) t0
        left join
        (
            select month,
                   lead(stu_id_arr,1) over(order by month) as lead_stu_id_arr
            from(
                 select date_format(dt,'yyyy-MM') as month,
                        collect_list(stu_id) as stu_id_arr
                 from test19
                 group by date_format(dt,'yyyy-MM')
                ) tmp1
        ) t1
        on t0.month = t1.month
    ) tmp2;

计算结果如下:

sql 复制代码
2020-01	0
2020-02	0
2020-03	2
2020-04	2
2020-05	1

计算截止到当前月的退费人数,sql代码如下:

sql 复制代码
select month,
       -- sum() over(order by ..) 窗口计算范围:上无边界(起始行)到当前行
       sum(month_cnt) over(order by month) as result
from(
    select month,
          lag(next_month_cnt,1,0) over(order by month) as month_cnt
    from(
        select distinct t0.month as month,
               sum(if(!array_contains(t1.lead_stu_id_arr,t0.stu_id),1,0)) over(partition by t0.month) as next_month_cnt
        from
            (select
                  date_format(dt,'yyyy-MM') as month,
                  stu_id
            from test19) t0
        left join
        (
            select month,
                   lead(stu_id_arr,1) over(order by month) as lead_stu_id_arr
            from(
                 select date_format(dt,'yyyy-MM') as month,
                        collect_list(stu_id) as stu_id_arr
                 from test19
                 group by date_format(dt,'yyyy-MM')
                ) tmp1
        ) t1
        on t0.month = t1.month
    ) tmp2
) tmp3;

计算结果为:

sql 复制代码
2020-01	0
2020-02	0
2020-03	2
2020-04	4
2020-05	5

3 小结

针对存在性问题,一般的求解思路是:1.利用collect_set()或者 collect_list()函数进行聚合,将数据集转换成数据组。2.再利用array_contains()等函数判断集合(数组)中是否存在某元素,针对结果打上标签。3.再根据标签进行之后的分组聚合计算等。

**ps:**以上文章参考:

https://blog.csdn.net/godlovedaniel/article/details/119388498?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167921970316800184142859%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167921970316800184142859&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-119388498-null-null.142^v74^control_1,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=%E5%AD%98%E5%9C%A8%E6%80%A7%E9%97%AE%E9%A2%98&spm=1018.2226.3001.4187文章浏览阅读741次。本文对存在性问题进行了探讨和研究,此类问题往往需要对不同的记录做对比分析,我们可以先将符合条件的数据域按照collect_set()或collect_list()函数进行聚合转换成数组,然后获取历史的数据域放入当前行,最后利用hive中数组的相关处理手段进行对比分析。常用的hive数组处理函数如expode()、size()、array()、array_contains()等函数,本题就借助于hive ,array_contains()函数进行存在性问题分析。_sql 求截止当前月退费总人数https://blog.csdn.net/godlovedaniel/article/details/119388498?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167921970316800184142859%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167921970316800184142859&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-119388498-null-null.142%5Ev74%5Econtrol_1,201%5Ev4%5Eadd_ask,239%5Ev2%5Einsert_chatgpt&utm_term=%E5%AD%98%E5%9C%A8%E6%80%A7%E9%97%AE%E9%A2%98&spm=1018.2226.3001.4187

相关推荐
Natural_yz4 小时前
大数据学习09之Hive基础
大数据·hive·学习
Natural_yz4 小时前
大数据学习10之Hive高级
大数据·hive·学习
AI服务老曹4 小时前
建立更及时、更有效的安全生产优化提升策略的智慧油站开源了
大数据·人工智能·物联网·开源·音视频
Mephisto.java5 小时前
【大数据学习 | HBASE高级】storeFile文件的合并
大数据·sql·oracle·json·hbase·database
这样の我5 小时前
hbase集成phoenix
大数据·数据库·hbase
思通数据5 小时前
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
大数据·人工智能·目标检测·计算机视觉·自然语言处理·数据挖掘·ocr
不二人生5 小时前
SQL面试题——连续出现次数
hive·sql·面试
CoderJia程序员甲5 小时前
重学SpringBoot3-整合 Elasticsearch 8.x (三)使用Repository
java·大数据·spring boot·elasticsearch
东方巴黎~Sunsiny5 小时前
如何优化Elasticsearch的查询性能?
大数据·elasticsearch·搜索引擎
杭州的物联网专家6 小时前
涉密载体管控系统:DW-S402全方位守护信息安全的利器
大数据