【多模态MLLMs+图像编辑】MGIE:苹果开源基于指令和多模态大语言模型的图片编辑神器(24.02.03开源)

项目主页:https://mllm-ie.github.io/
论文 :基于指令和多模态大语言模型图片编辑 2309.Guiding Instruction-based Image Editing via Multimodal Large Language Models

代码:https://github.com/apple/ml-mgie | gradio_UI

媒体:机器之心的解析https://mp.weixin.qq.com/s/c87cUuyz4bUgfW2_ma5xpA

网友实测

一些概念

MLLMs: Multimodal large language models

表示多模态大语言模型,是从预训练的LLM(大语言模型)初始化参数,MLLM添加了一个视觉编码器(visual encoder 例如,CLIP-L )来提取视觉特征 f f f,以及一个适配器 W W W将特征 f f f投影到语言模态中。根据论文2304.Visual Instruction Tuning :MLLMs的训练可以概括为:

原文摘要:

基于指令 (Instruction-based)的图像编辑通过自然命令提高了图像操作的可控性和灵活性,而无需详细描述或区域掩模。然而,人类的指令有时过于简短,目前的方法无法捕捉和遵循。多模态大语言模型 (Multimodal large language models (MLLMs))在跨模态理解和视觉感知响应生成方面显示出很好的能力。

我们研究了(investigate) MLLM如何促进编辑指令(instructions),并提出 MLLM 引导的图像编辑 (MGIE)。

MGIE学习推导表达指令(derive expressive instructions)并提供明确指导(explicit guidance)。编辑模型 共同捕获这种视觉想象,并通过端到端训练执行操作。我们评估了photoshop方式的修改全局照片优化局部编辑的各个方面。

大量的实验结果表明,表达性指令对于基于指令的图像编辑至关重要,我们的MGIE可以在保持竞争性推理效率的同时显著改善自动度量和人工评估。

Instruction-based image editing improves the controllability and flexibility of image manipulation via natural commands without elaborate descriptions or regional masks. However, human instructions are sometimes too brief for current methods to capture and follow. Multimodal large language models (MLLMs) show promising capabilities in cross-modal understanding and visual-aware response generation via LMs. We investigate how MLLMs facilitate edit instructions and present MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instructions and provides explicit guidance. The editing model jointly captures this visual imagination and performs manipulation through end-to-end training. We evaluate various aspects of Photoshop-style modification, global photo optimization, and local editing. Extensive experimental results demonstrate that expressive instructions are crucial to instruction-based image editing, and our MGIE can lead to a notable improvement in automatic metrics and human evaluation while maintaining competitive inference efficiency.

主要方法

使用的MLLMs预训练模型: https://github.com/haotian-liu/LLaVA#llava-weights

微调了

图 2:MLLM 引导的图像编辑 (MGIE) 概述,它利用 MLLM 来增强基于指令的图像编辑。MGIE学习推导出简洁的表达指令(concise expressive),并为预期目标提供明确的视觉相关指导。扩散模型以端到端的方式通过编辑头联合训练和实现具有潜在想象的图像编辑。

相关工作

与主流方法对比

算法流程

算法 1 展示了 MGIE 学习过程。MLLM 通过指令损失 L_ins 导出简洁指令 ε。借助 [IMG] 的潜在想象,图片转变其模态并引导 图片合成结果图像。编辑损失 L_edit 用于扩散训练。由于大多数权重可以被冻结(MLLM 内的自注意力块),因而可以实现参数高效的端到端训练。

公式2

公式5

相关推荐
子燕若水2 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室3 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿4 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫4 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手4 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记4 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元4 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术5 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
超龄超能程序猿5 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉