【多模态MLLMs+图像编辑】MGIE:苹果开源基于指令和多模态大语言模型的图片编辑神器(24.02.03开源)

项目主页:https://mllm-ie.github.io/
论文 :基于指令和多模态大语言模型图片编辑 2309.Guiding Instruction-based Image Editing via Multimodal Large Language Models

代码:https://github.com/apple/ml-mgie | gradio_UI

媒体:机器之心的解析https://mp.weixin.qq.com/s/c87cUuyz4bUgfW2_ma5xpA

网友实测

一些概念

MLLMs: Multimodal large language models

表示多模态大语言模型,是从预训练的LLM(大语言模型)初始化参数,MLLM添加了一个视觉编码器(visual encoder 例如,CLIP-L )来提取视觉特征 f f f,以及一个适配器 W W W将特征 f f f投影到语言模态中。根据论文2304.Visual Instruction Tuning :MLLMs的训练可以概括为:

原文摘要:

基于指令 (Instruction-based)的图像编辑通过自然命令提高了图像操作的可控性和灵活性,而无需详细描述或区域掩模。然而,人类的指令有时过于简短,目前的方法无法捕捉和遵循。多模态大语言模型 (Multimodal large language models (MLLMs))在跨模态理解和视觉感知响应生成方面显示出很好的能力。

我们研究了(investigate) MLLM如何促进编辑指令(instructions),并提出 MLLM 引导的图像编辑 (MGIE)。

MGIE学习推导表达指令(derive expressive instructions)并提供明确指导(explicit guidance)。编辑模型 共同捕获这种视觉想象,并通过端到端训练执行操作。我们评估了photoshop方式的修改全局照片优化局部编辑的各个方面。

大量的实验结果表明,表达性指令对于基于指令的图像编辑至关重要,我们的MGIE可以在保持竞争性推理效率的同时显著改善自动度量和人工评估。

Instruction-based image editing improves the controllability and flexibility of image manipulation via natural commands without elaborate descriptions or regional masks. However, human instructions are sometimes too brief for current methods to capture and follow. Multimodal large language models (MLLMs) show promising capabilities in cross-modal understanding and visual-aware response generation via LMs. We investigate how MLLMs facilitate edit instructions and present MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instructions and provides explicit guidance. The editing model jointly captures this visual imagination and performs manipulation through end-to-end training. We evaluate various aspects of Photoshop-style modification, global photo optimization, and local editing. Extensive experimental results demonstrate that expressive instructions are crucial to instruction-based image editing, and our MGIE can lead to a notable improvement in automatic metrics and human evaluation while maintaining competitive inference efficiency.

主要方法

使用的MLLMs预训练模型: https://github.com/haotian-liu/LLaVA#llava-weights

微调了

图 2:MLLM 引导的图像编辑 (MGIE) 概述,它利用 MLLM 来增强基于指令的图像编辑。MGIE学习推导出简洁的表达指令(concise expressive),并为预期目标提供明确的视觉相关指导。扩散模型以端到端的方式通过编辑头联合训练和实现具有潜在想象的图像编辑。

相关工作

与主流方法对比

算法流程

算法 1 展示了 MGIE 学习过程。MLLM 通过指令损失 L_ins 导出简洁指令 ε。借助 [IMG] 的潜在想象,图片转变其模态并引导 图片合成结果图像。编辑损失 L_edit 用于扩散训练。由于大多数权重可以被冻结(MLLM 内的自注意力块),因而可以实现参数高效的端到端训练。

公式2

公式5

相关推荐
Blossom.1181 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer2 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic2 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天3 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU3 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec3 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子4 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study4 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz4 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子4 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor