基于matlab的密度散点图绘制

1. 什么是密度散点图?

密度散点图就是在普通散点图的基础上,基于样本点一定范围的样本数计算该样本点的密度,以不同的颜色来显示样本点密度的大小,这样能够直观的显示出数据的空间聚集情况,如下图分别是二维和三维密度散点图

2. 密度散点图绘制思路

2.1 网格划分

以二维散点图为例,将坐标轴范围划分为一系列大小相同的格网,统计每一个格网内部的样本点数除以格网面积,将所得结果作为该格网内样本点的密度,根据实际需要决定是否需要将密度进行归一化处理,这种方法计算量小,效率高,但效果相对较差

2.2 空间搜索

以二维散点图为例,对某一样本点搜索给定半径范围内的样本数,样本数除以搜索圆的面积作为样本点的密度,同样根据实际使用需要决定是否需要将密度进行归一化处理,这种方法计算量大,效率较低,但效果更好

3. matlab绘制密度散点图

基于网格划分的密度计算函数

matlab 复制代码
function density = density_Grid(data,nd)
% 功能:利用格网划分提取离散点密度特征
% 输入:data   - 原始数据
% 输入:nd - 划分格网数
% 输出:density - 样本密度向量 
M = size(data,1);
N = size(data,2);
data_max = max(data);
data_min = min(data);
data_interval = (data_max - data_min)/nd;
if N == 2
    data_freq = zeros(nd,nd);
    data_index = zeros(M,N);
    for i = 1:M
        x = data(i,1);
        y = data(i,2);
        c = min(floor((x - data_min(1))/data_interval(1))+1,nd);
        r = min(floor((data_max(2)-y)/data_interval(2))+1,nd);
        data_freq(r,c) = data_freq(r,c)+1;
        data_index(i,:) = [r,c]; 
    end
else
    data_freq = zeros(nd,nd,nd);
    for i = 1:M
        x = data(i,1);
        y = data(i,2);
        z = data(i,3);
        c = min(floor((x - data_min(1))/data_interval(1))+1,nd);
        r = min(floor((data_max(2)-y)/data_interval(2))+1,nd);
        v = min(floor((z - data_min(3))/data_interval(3))+1,nd);
        data_freq(r,c,v) = data_freq(r,c,v)+1;
        data_index(i,:) = [r,c,v];
    end
end
s = 1;
for i = 1:N
    s = s * data_interval(i);
end
data_freq = data_freq./s;
density = zeros(M,1);
if N==2
    for i = 1:M
        r = data_index(i,1);
        c = data_index(i,2);
        density(i,1) = data_freq(r,c);
    end
else
    for i = 1:M
        r = data_index(i,1);
        c = data_index(i,2);
        v = data_index(i,3);
        density(i,1) = data_freq(r,c,v);
    end
end
% 密度归一化
max_density = max(density);
density = density./max_density;
end

基于空间搜索的密度计算函数

matlab 复制代码
function density = density_KD(data,radius)
% 功能:利用KD树提取离散点密度特征
% 输入:data   - 原始数据
% 输入:radius - 搜索半径
% 输出:density - 样本密度向量 
M = size(data,1);
N = size(data,2);
density = zeros(M,1);
idx = rangesearch(data(:,1:N),data(:,1:N),radius,'Distance','euclidean','NSMethod','kdtree');
if N=2
	s = pi*radius^2
else
	s = 3/4*pi*radius^3
end
for i = 1:M
    density(i,1) = length(idx{i})/s;
end
% 密度归一化
max_density = max(density);
density = density./max_density;
end

绘图函数

matlab 复制代码
% 数据读取
% xbly_data = readtable("xiboliya.xlsx");
% xbly_data = table2array(xbly_data)
% xbly_a = xbly_data(:,2);
% xbly_dem = xbly_data(:,3);
% xbly_slope = xbly_data(:,4);
% xbly_ndvi = xbly_data(:,5);
% scatterDensity(xbly_slope(1:10:528523),xbly_a(1:10:528523),"slope","a")
function scatterDensity(x,y,xtitle,ytitle)
data=[x,y];
density_2D = density_KD(data(:,1:2),1);%将density2D_KD放在该代码同一路径下
% density_2D = density_Grid(data(:,1:2),40000);
scatter(x,y,10, density_2D, '.');
%设置色带
colormap('jet');
hXLabel = xlabel(xtitle);
hYLabel = ylabel(ytitle);
% 坐标轴美化
set(gca, 'Box', 'on', ...                                        % 边框
        'XGrid', 'off', 'YGrid', 'off', ...                      % 网格
        'TickDir', 'in', 'TickLength', [.015 .015], ...          % 刻度
        'XMinorTick', 'on', 'YMinorTick', 'on', 'YTick', 0:2:10,'YLim', [0,10]);            % 小刻度
% 字体和字号
set(gca, 'FontName', 'TimesNewRoma')
set([hXLabel, hYLabel],'FontName', 'TimesNewRoma')
set(gca, 'FontSize', 10)
set(gca, 'FontName', 'TimesNewRoma')
set([hXLabel, hYLabel],'FontSize', 11)
% 背景颜色
set(gca,'Color',[0 0 1]);
%设置色带显示
c = colorbar;
set(c,'tickdir','out');
%色带坐标范围及显示间隔
set(c,'YTick',0:0.2:1.0); 
% 保存结果
% saveas(gcf,strcat(xtitle,"_",ytitle,".fig"));
end

网格划分

空间搜索

相关推荐
Mikhail_G5 分钟前
Python应用变量与数据类型
大数据·运维·开发语言·python·数据分析
YuTaoShao10 分钟前
Java八股文——集合「List篇」
java·开发语言·list
Bl_a_ck39 分钟前
【JS进阶】ES6 实现继承的方式
开发语言·前端·javascript
愈努力俞幸运1 小时前
c++ 头文件
开发语言·c++
永日456701 小时前
学习日记-day24-6.8
开发语言·学习·php
BillKu1 小时前
Java后端检查空条件查询
java·开发语言
科研工作站1 小时前
【创新算法】改进深度优先搜索算法配合二进制粒子群的配电网故障恢复重构研究
matlab·配电网·故障恢复·改进粒子群·深度优先搜索·33节点
十五年专注C++开发1 小时前
CMake基础:gcc/g++编译选项详解
开发语言·c++·gcc·g++
vortex52 小时前
探索 Shell:选择适合你的命令行利器 bash, zsh, fish, dash, sh...
linux·开发语言·bash·shell·dash
zzc9212 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab