Python中常用的数据分析工具中,通常使用pandas软件包。 像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。
1 读取数据集
首先创建一个人工数据集,并存储在CSV(逗号分隔值)文件 .../data/house_tiny.csv中。 以其他格式存储的数据也可以通过类似的方式进行处理。将数据集按行写入CSV文件中:
python
import os
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
要从创建的CSV文件中加载原始数据集,导入pandas包并调用read_csv函数。该数据集有四行三列。其中每行描述了房间数量("NumRooms")、巷子类型("Alley")和房屋价格("Price")。
python
import pandas as pd
data = pd.read_csv(data_file)
print(data)
# NumRooms Alley Price
# 0 NaN Pave 127500
# 1 2.0 NaN 106000
# 2 4.0 NaN 178100
# 3 NaN NaN 140000
2 处理缺失值
"NaN"项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。
通过位置索引iloc,将data分成inputs和outputs, 其中前者为data的前两列,而后者为data的最后一列。 对于inputs中缺少的数值,我们用同一列的均值替换"NaN"项。
python
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)
# NumRooms Alley
# 0 3.0 Pave
# 1 2.0 NaN
# 2 4.0 NaN
# 3 3.0 NaN
对于inputs中的类别值或离散值,我们将"NaN"视为一个类别。 由于"巷子类型"("Alley")列只接受两种类型的类别值"Pave"和"NaN", pandas可以自动将此列转换为两列"Alley_Pave"和"Alley_nan"。 巷子类型为"Pave"的行会将"Alley_Pave"的值设置为1,"Alley_nan"的值设置为0。 缺少巷子类型的行会将"Alley_Pave"和"Alley_nan"分别设置为0和1。
python
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
# NumRooms Alley_Pave Alley_nan
# 0 3.0 1 0
# 1 2.0 0 1
# 2 4.0 0 1
# 3 3.0 0 1
3 转换为张量格式
inputs和outputs中的所有条目都是数值类型,它们可以转换为张量格式。 当数据采用张量格式后,可以通过那些张量函数来进一步操作:
python
import torch
X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
X, y
# (tensor([[3., 1., 0.],
# [2., 0., 1.],
# [4., 0., 1.],
# [3., 0., 1.]], dtype=torch.float64),
# tensor([127500., 106000., 178100., 140000.], dtype=torch.float64))