深度学习预备知识2——数据预处理

Python中常用的数据分析工具中,通常使用pandas软件包。 像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。

1 读取数据集

首先创建一个人工数据集,并存储在CSV(逗号分隔值)文件 .../data/house_tiny.csv中。 以其他格式存储的数据也可以通过类似的方式进行处理。将数据集按行写入CSV文件中:

python 复制代码
import os

os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
    f.write('NumRooms,Alley,Price\n')  # 列名
    f.write('NA,Pave,127500\n')  # 每行表示一个数据样本
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')

要从创建的CSV文件中加载原始数据集,导入pandas包并调用read_csv函数。该数据集有四行三列。其中每行描述了房间数量("NumRooms")、巷子类型("Alley")和房屋价格("Price")。

python 复制代码
import pandas as pd

data = pd.read_csv(data_file)
print(data)

#    NumRooms Alley   Price
# 0       NaN  Pave  127500
# 1       2.0   NaN  106000
# 2       4.0   NaN  178100
# 3       NaN   NaN  140000

2 处理缺失值

"NaN"项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。

通过位置索引iloc,将data分成inputs和outputs, 其中前者为data的前两列,而后者为data的最后一列。 对于inputs中缺少的数值,我们用同一列的均值替换"NaN"项。

python 复制代码
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

#    NumRooms Alley
# 0       3.0  Pave
# 1       2.0   NaN
# 2       4.0   NaN
# 3       3.0   NaN

对于inputs中的类别值或离散值,我们将"NaN"视为一个类别。 由于"巷子类型"("Alley")列只接受两种类型的类别值"Pave"和"NaN", pandas可以自动将此列转换为两列"Alley_Pave"和"Alley_nan"。 巷子类型为"Pave"的行会将"Alley_Pave"的值设置为1,"Alley_nan"的值设置为0。 缺少巷子类型的行会将"Alley_Pave"和"Alley_nan"分别设置为0和1。

python 复制代码
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

#    NumRooms  Alley_Pave  Alley_nan
# 0       3.0           1          0
# 1       2.0           0          1
# 2       4.0           0          1
# 3       3.0           0          1

3 转换为张量格式

inputs和outputs中的所有条目都是数值类型,它们可以转换为张量格式。 当数据采用张量格式后,可以通过那些张量函数来进一步操作:

python 复制代码
import torch

X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
X, y

# (tensor([[3., 1., 0.],
#          [2., 0., 1.],
#          [4., 0., 1.],
#          [3., 0., 1.]], dtype=torch.float64),
#  tensor([127500., 106000., 178100., 140000.], dtype=torch.float64))
相关推荐
Jackilina_Stone41 分钟前
transformers:打造的先进的自然语言处理
人工智能·自然语言处理·transformers
2401_8979300642 分钟前
BERT 模型是什么
人工智能·深度学习·bert
风筝超冷2 小时前
GPT - 多头注意力机制(Multi-Head Attention)模块
gpt·深度学习·attention
最新快讯3 小时前
科技快讯 | 阿里云百炼MCP服务上线;英伟达官宣:CUDA 工具链将全面原生支持 Python
人工智能
__Benco4 小时前
OpenHarmony子系统开发 - 热管理(一)
人工智能·harmonyos
吴法刚5 小时前
14-Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析(二分类))
人工智能·深度学习·自然语言处理·分类·langchain·bert·langgraph
碳基学AI5 小时前
北京大学DeepSeek内部研讨系列:AI在新媒体运营中的应用与挑战|122页PPT下载方法
大数据·人工智能·python·算法·ai·新媒体运营·产品运营
是店小二呀5 小时前
Llama 4革命性发布与绿色AI前沿研究
人工智能·llama
2301_799755345 小时前
文件内容课堂总结
人工智能
杰克逊的日记5 小时前
AI集群设计
人工智能·ai·gpu·ai集群·pytorach