【大数据面试题】005 谈一谈 Flink Watermark 水印

一步一个脚印,一天一道面试题。

感觉我现在很难把水印描述的很好,但,完成比完美更重要。后续我再补充。各位如果有什么建议或补充也欢迎留言。

在实时处理任务时,由于网络延迟,人工异常,各种问题,数据往往会出现乱序,不按照我们的预期到达处理框架。

WaterMark 水印,就是为了一定程度的解决数据,延迟乱序问题的。

使用 WaterMark 一般有以下几个步骤:

  • 定义时间特性
    (Flink 1.12 已废弃,默认使用 事件时间)
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
  • 设置 Watermark 策略,赋值事件时间
java 复制代码
        // 分配时间戳和水位线
        DataStream<Tuple2<Long, Integer>> withTimestampsAndWatermarks = parsedStream
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .<Tuple2<Long, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                        .withTimestampAssigner((element, recordTimestamp) -> element.f0));

话不多说,直接给个 Watermark 水印样例代码。

java 复制代码
public class SimpleWatermarkExample {
    public static void main(String[] args) throws Exception {
        // 设置流执行环境
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 从 socket 文本流接收数据
        DataStream<String> input = env.addSource(new SocketTextStreamFunction("localhost", 9999, "\n", -1));

        // 解析输入的数据
        DataStream<Tuple2<Long, Integer>> parsedStream = input
                .map(new MapFunction<String, Tuple2<Long, Integer>>() {
                    @Override
                    public Tuple2<Long, Integer> map(String value) throws Exception {
                        String[] parts = value.split(",");
                        return new Tuple2<>(Long.parseLong(parts[0]), Integer.parseInt(parts[1]));
                    }
                });

        // 分配时间戳和水位线
        DataStream<Tuple2<Long, Integer>> withTimestampsAndWatermarks = parsedStream
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .<Tuple2<Long, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                        .withTimestampAssigner((element, recordTimestamp) -> element.f0));

        // 使用窗口函数统计每10秒内的最大值
        DataStream<String> maxValues = withTimestampsAndWatermarks
                .windowAll(TumblingEventTimeWindows.of(Time.seconds(10)))
                .apply(new WindowFunction<Tuple2<Long, Integer>, String, TimeWindow>() {
                    @Override
                    public void apply(TimeWindow window, Iterable<Tuple2<Long, Integer>> values, Collector<String> out) throws Exception {
                        int maxValue = Integer.MIN_VALUE;
                        for (Tuple2<Long, Integer> value : values) {
                            maxValue = Math.max(maxValue, value.f1);
                        }
                        out.collect("Window: " + window + " Max Value: " + maxValue);
                    }
                });

        // 打印结果
        maxValues.print();

        // 执行程序
        env.execute("Simple Flink Watermark Example");
    }
}
相关推荐
Yvonne9782 小时前
创建三个节点
java·大数据
OJAC近屿智能5 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能
lucky_syq5 小时前
Spark算子:大数据处理的魔法棒
大数据·分布式·spark
m0_748233648 小时前
【分布式】Hadoop完全分布式的搭建(零基础)
大数据·hadoop·分布式
圣享科技SMARTLIC8 小时前
企业软件合规性管理:构建高效、安全的软件资产生态
大数据·安全·浮动许可证监控·许可证管理·浮动许可证优化·软件资产管理·浮动许可证管理
京东零售技术8 小时前
京东广告基于 Apache Doris 的冷热数据分层实践
大数据
D愿你归来仍是少年8 小时前
解决Python升级导致PySpark任务异常方案
大数据·开发语言·python·spark
薇晶晶9 小时前
如何安装Hadoop
大数据·hadoop·分布式
weixin_307779139 小时前
PySpark检查两个DataFrame的数据是否一致
大数据·spark·pandas
End9289 小时前
如何安装虚拟机cenos7系统
大数据·linux·运维