PyTorch识别验证码

## 一、生成测试集数据

pip install captcha

common.py

import random
import time
captcha_array = list("0123456789abcdefghijklmnopqrstuvwxyz")
captcha_size = 4

from captcha.image import ImageCaptcha

if __name__ == '__main__':
    for i in range(10):
        image = ImageCaptcha()
        image_text = "".join(random.sample(captcha_array, captcha_size))
        image_path = "./datasets/train/{}_{}.png".format(image_text, int(time.time()))

        image.write(image_text, image_path)

生成验证码

二、one-hot编码将类别变量转换为机器学习算法易于利用的一种形式的过程。

one_hot.py

import common
import torch
import torch.nn.functional as F

def text2vec(text):
    # 将文本转换为变量
    vectors = torch.zeros((common.captcha_size, common.captcha_array.__len__()))
    # vectors[0,0] = 1
    # vectors[1,3] = 1
    # vectors[2,4] = 1
    # vectors[3, 1] = 1

    for i in range(len(text)):
        vectors[i, common.captcha_array.index(text[i])] = 1
    return vectors


def vectotext(vec):

    vec=torch.argmax(vec, dim=1)

    text_label=""
    for v in vec:
        text_label+=common.captcha_array[v]
    return  text_label

if __name__ == '__main__':
    vec=text2vec("aab1")
    print(vec, vec.shape)
    print(vectotext(vec))

三、 然后继续添加

my_datasets.py

import os

from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
import one_hot

class mydatasets(Dataset):
    def __init__(self,root_dir):
       super(mydatasets, self).__init__()
       self.list_image_path=[ os.path.join(root_dir,image_name) for image_name in os.listdir(root_dir)]

       self.transforms=transforms.Compose([
           transforms.Resize((60,160)),
           transforms.ToTensor(),
           transforms.Grayscale()

       ])
    def __getitem__(self, index):
        image_path = self.list_image_path[index]
        img_ = Image.open(image_path)
        image_name=image_path.split("\\")[-1]
        img_tesor=self.transforms(img_)
        img_lable=image_name.split("_")[0]
        img_lable=one_hot.text2vec(img_lable)
        img_lable=img_lable.view(1,-1)[0]
        return img_tesor,img_lable
    def __len__(self):
        return self.list_image_path.__len__()


if __name__ == '__main__':

    d=mydatasets("datasets/train")
    img,label=d[0]
    writer=SummaryWriter("logs")
    writer.add_image("img",img,1)
    print(img.shape)
    writer.close()

dataLoader 加载dataset

就是数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出,就是做一个数据的初始化。

四、训练

五、CNN卷积神经网络

model.py

import torch
from torch import nn
import common
class mymodel(nn.Module):
    def __init__(self):
        super(mymodel, self).__init__()
        self.layer1 = nn.Sequential(
            # 卷积层
            nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1),
            # 激活层
            nn.ReLU(),
            # 池化层
            nn.MaxPool2d(kernel_size=2)   #[6, 64, 30, 80]
        )
        self.layer2 = nn.Sequential(
            # 卷积层
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
            # 激活层
            nn.ReLU(),
            # 池化层
            nn.MaxPool2d(2)     #[6, 128, 15, 40]
        )
        self.layer3 = nn.Sequential(
            # 卷积层
            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1),
            # 激活层
            nn.ReLU(),
            # 池化层
            nn.MaxPool2d(2)  # [6, 256, 7, 20]
        )

        self.layer4 = nn.Sequential(
            # 卷积层
            nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1),
            # 激活层
            nn.ReLU(),
            # 池化层
            nn.MaxPool2d(2)  # [6, 512, 3, 10]
        )
        # self.layer5 = nn.Sequential(
        #     nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
        #     nn.ReLU(),
        #     nn.MaxPool2d(2)  # [6, 512, 1, 5]
        # )

        self.layer6 = nn.Sequential(
            # 展平
          nn.Flatten(),    #[6, 2560] [64, 15360]
            # 线性层
          nn.Linear(in_features=15360, out_features=4096),
            # 防止过拟合
          nn.Dropout(0.2),  # drop 20% of the neuron
            # 激活曾
          nn.ReLU(),
            # 线性层
          nn.Linear(in_features=4096, out_features=common.captcha_size*common.captcha_array.__len__())
        )
    def forward(self,x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        #x = x.view(1,-1)[0]#[983040]


        x = self.layer6(x)
        # x = x.view(x.size(0), -1)
        return x;

if __name__ == '__main__':
    data = torch.ones(64, 1, 60, 160)
    model = mymodel()
    x = model(data)
    print(x.shape)

六、训练

train.py

import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from my_datasets import mydatasets
from model import mymodel

if __name__ == '__main__':
    train_datas = mydatasets("datasets/train")
    test_data = mydatasets("datasets/test")
    train_dataloader = DataLoader(train_datas, batch_size=64, shuffle=True)
    test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
    # m = mymodel().cuda()    没有GPU
    m = mymodel()
    # MultiLabelSoftMarginLoss 多标签交叉熵损失函数
    # 优化器 Adam 一般要求学习率比较小
    # 先将梯度归零 zero_grad
    # 反向传播计算 backward
    # loss_fn = nn.MultiLabelSoftMarginLoss().cuda()   没有GPU
    loss_fn = nn.MultiLabelSoftMarginLoss()
    optimizer = torch.optim.Adam(m.parameters(), lr=0.001)
    w = SummaryWriter("logs")
    total_step = 0

for i in range(10):
    # print("外层训练次数{}".format(i))
    for i,(imgs, targets) in enumerate(train_dataloader):
        # imgs = imgs.cuda()   没有GPU
        # targets = targets.cuda()   没有GPU
        outputs = m(imgs)
        loss = loss_fn(outputs, targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if i%10 == 0:
            total_step += 1
            print("训练{}次,loss:{}".format(total_step*10, loss.item()))
            w.add_scalar("loss", loss, total_step)
    w.close()

torch.save(m, "model.pth")

tensorboard --logdir=logs

使用tensorboard 查看损失率,接近零了。

七、图片预测

model.train() 和 model.eval()一般在模型训练和评价的时候会加上这两句,主要是针对由于model在训练时和评价时Batch Normalization 和Dropout方法模式不同,例如model指定t因此,在使用PyTorch进行训练和测试时一定注意要把rain/eval

predict.py

from PIL import Image
from torch.utils.data import DataLoader
import one_hot
import model
import torch
import common
import my_datasets
from torchvision import transforms


def test_pred():
    #  m = torch.load("model.pth").cuda()  没有GPU
    m = torch.load("model.pth")
    m.eval()
    test_data = my_datasets.mydatasets("datasets/test")
    test_dataloader = DataLoader(test_data, batch_size=1, shuffle=False)
    test_length = test_data.__len__()
    correct = 0
    for i, (imgs, lables) in enumerate(test_dataloader):
        # imgs = imgs.cuda()   没有GPU
        # lables = lables.cuda()  没有GPU
        lables = lables.view(-1, common.captcha_array.__len__())
        lables_text = one_hot.vectotext(lables)
        predict_outputs = m(imgs)
        predict_outputs = predict_outputs.view(-1, common.captcha_array.__len__())
        predict_labels = one_hot.vectotext(predict_outputs)
        if predict_labels == lables_text:
            correct += 1
            print("预测正确:正确值:{},预测值:{}".format(lables_text, predict_labels))
        else:
            print("预测失败:正确值:{},预测值:{}".format(lables_text, predict_labels))
        # m(imgs)
    print("正确率{}".format(correct / test_length * 100))


def pred_pic(pic_path):
    img = Image.open(pic_path)
    tersor_img = transforms.Compose([
        transforms.Grayscale(),
        transforms.Resize((60, 160)),
        transforms.ToTensor()
    ])
    # img = tersor_img(img).cuda() 没有GPU
    img = tersor_img(img)
    print(img.shape)
    img = torch.reshape(img, (-1, 1, 60, 160))
    print(img.shape)
    # m = torch.load("model.pth").cuda() 没有GPU
    m = torch.load("model.pth")
    outputs = m(img)
    outputs = outputs.view(-1, len(common.captcha_array))
    outputs_lable = one_hot.vectotext(outputs)
    print(outputs_lable)


if __name__ == '__main__':
   # test_pred()
    pred_pic("./datasets/test/5ogl_1705418909.png")

预测值是一样的,需要找一些真实的验证码图片

相关推荐
果冻人工智能4 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工5 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
进击的六角龙5 分钟前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂5 分钟前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
石小石Orz7 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
湫ccc13 分钟前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤16 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭19 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~20 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
lzhlizihang22 分钟前
python如何使用spark操作hive
hive·python·spark