数字图像处理实验记录十(图像分割实验)

一、基础知识

1、什么是图像分割

图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域。

2、图像分割是怎么实现的

图像分割算法基于像素值的不连续性和相似性,不连续性是图像的边缘,再根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合。

二、实验要求

三、实验记录(具体任务只展示对图片1的处理)

总代码:

matlab 复制代码
clear all;
close all;
clc;
% 实验11 图像分割
H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

I = imread('02.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片2_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片2_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片2_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');
I = imread('Acat.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片3_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片3_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片3_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。

matlab 复制代码
H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。

matlab 复制代码
figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。

matlab 复制代码
figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

四、实验结果

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。


任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。


任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。


相关推荐
PyAIExplorer2 小时前
图像处理中的插值方法:原理与实践
图像处理·人工智能
CoovallyAIHub3 小时前
YOLO模型优化全攻略:从“准”到“快”,全靠这些招!
深度学习·算法·计算机视觉
彭祥.15 小时前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类
超龄超能程序猿15 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
Tony沈哲16 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
Chef_Chen17 小时前
从0开始学习计算机视觉--Day07--神经网络
神经网络·学习·计算机视觉
加油吧zkf19 小时前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
加油吧zkf21 小时前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf21 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
静心问道1 天前
GoT:超越思维链:语言模型中的有效思维图推理
人工智能·计算机视觉·语言模型