数字图像处理实验记录十(图像分割实验)

一、基础知识

1、什么是图像分割

图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域。

2、图像分割是怎么实现的

图像分割算法基于像素值的不连续性和相似性,不连续性是图像的边缘,再根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合。

二、实验要求

三、实验记录(具体任务只展示对图片1的处理)

总代码:

matlab 复制代码
clear all;
close all;
clc;
% 实验11 图像分割
H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

I = imread('02.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片2_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片2_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片2_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');
I = imread('Acat.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片3_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片3_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片3_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。

matlab 复制代码
H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。

matlab 复制代码
figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。

matlab 复制代码
figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

四、实验结果

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。


任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。


任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。


相关推荐
sali-tec9 小时前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
Coding茶水间11 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
却道天凉_好个秋14 小时前
OpenCV(四十一):SIFT关键点检测
人工智能·opencv·计算机视觉
明月照山海-15 小时前
机器学习周报二十六
人工智能·机器学习·计算机视觉
kaikaile199515 小时前
MATLAB 灰度图像的二维傅里叶变换
算法·计算机视觉·matlab
永恒-龙啸15 小时前
图像增强与滤波
图像处理·人工智能·计算机视觉
ʜᴇɴʀʏ16 小时前
论文阅读 SAM 3: Segment Anything with Concepts
论文阅读·人工智能·目标检测·计算机视觉·目标跟踪
木 东17 小时前
《ISP调试实战课程》
图像处理·camera·isp
测试人社区-千羽18 小时前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
豆芽81920 小时前
计算机视觉:异常检测(paper with code汇总更新中)
人工智能·神经网络·计算机视觉·视觉检测·扩散模型