sklearn—roc_curve,roc_auc_score

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import roc_curve
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import roc_auc_score

# 加载数据
mnist = fetch_openml('mnist_784', version=1, parser='auto')
X, y = mnist['data'], mnist['target']
X = np.array(X)
y = np.array(y)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

# 打乱训练集
shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

# 创建二元标签
y_train_5 = (y_train == '5')
y_test_5 = (y_test == '5')

# 训练模型
clf = SGDClassifier(random_state=42)
clf.fit(X_train, y_train_5)

# 使用交叉验证预测获取决策分数
y_scores = cross_val_predict(clf, X_train, y_train_5, method="decision_function")

# 计算ROC曲线
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

# 绘制ROC曲线
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()

# 计算ROC曲线下面积auc
auc = roc_auc_score(y_train_5, y_scores)
print(auc)

1. 使用交叉验证预测获取决策分数

y_scores = cross_val_predict(clf, X_train, y_train_5, method="decision_function")

获取模型对每个样本的决策分数,这些分数随后被用于计算ROC曲线和AUC分数,以评估模型对于识别数字"5"的性能。

在分类任务中,很多模型不仅可以输出预测类别,还可以输出一个决策分数或概率估计,表示模型对每个类别的置信度。对于二分类问题,SGDClassifier 默认的决策函数返回的是样本属于正类的分数。通过指定 method="decision_function" ,cross_val_predict 将为每个输入样本返回这个决策分数,而非直接的分类预测(正类或负类)。

2. 计算ROC曲线

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

计算 ROC 曲线的各个点,并返回假正例率(False Positive Rate, FPR)、真正例率(True Positive Rate, TPR)以及用于生成这些率的决策阈值(Thresholds)。

3. 计算ROC曲线下面积auc

auc = roc_auc_score(y_train_5, y_scores)

4. thresholds、auc

阈值(Thresholds)

在分类任务中,模型通常输出一个连续的决策分数或概率估计来表示样本属于某个类别的置信度。通过设置不同的阈值,这些连续的分数会被转换为二元的分类结果(例如,正类或负类)。调整阈值会影响到模型的TPR和FPR,进而影响模型的性能表现。

曲线下面积(Area Under the Curve, AUC)

AUC是ROC曲线下的面积,提供了一个量化模型在所有可能的分类阈值下性能的方式。AUC的值介于0和1之间,一个完美的分类器的AUC为1,而一个完全随机的分类器的AUC为0.5。AUC越接近1,表示模型的性能越好。

5. 运行结果


相关推荐
liulanba几秒前
机器学习评估指标详解 - 高级篇
人工智能·机器学习
冰西瓜6001 小时前
隐马尔可夫模型的三大问题(HMM)
人工智能·机器学习
啊吧怪不啊吧2 小时前
新品限免|国产大模型工程化实战:GLM-4.7与MiniMax M2.1 免费选型对比
人工智能·机器学习·langchain
派葛穆2 小时前
机器人-六轴机械臂的正运动学
人工智能·机器学习·机器人
_illusion_2 小时前
反向传播的人生哲学:深度复盘的力量
人工智能·python·机器学习
武子康2 小时前
大数据-194 数据挖掘 从红酒分类到机器学习全景:监督/无监督/强化学习、特征空间与过拟合一次讲透
大数据·后端·机器学习
weixin_409383122 小时前
假如训练数据集是一门一门或一个个专业课程资料,分不同批次训练,有避免之前训练的数据遗忘的问题
深度学习·机器学习·训练模型
算法与编程之美2 小时前
解决tensor的shape不为1,如何转移到CPU的问题
人工智能·python·深度学习·算法·机器学习
山梨一碗粥2 小时前
DETR简单介绍
图像处理·深度学习·机器学习
梦帮科技3 小时前
第二十三篇:自然语言工作流生成:GPT-4集成实战
人工智能·python·机器学习·开源·gpt-3·极限编程