机器学习-SVM支持向量机

支持向量机是一类监督学习算法,实现二分类,其决策边界是对学习样本求解的最大边距超平面。

课程代码:

import numpy as np

my_seed = 2017

np.random.seed(my_seed)

import random

random.seed(my_seed)import matplotlib

import matplotlib.pyplot as plt

matplotlib.rcParams['font.family'] = 'SimHei'

data_set_name = "ec_data"

all_data = np.fromfile(data_set_name)/(1024 * 1024)

sequence_len = 10

X = []

Y = []

for i in range(len(all_data)-sequence_len):

X.append(all_data[i:i+sequence_len])

Y.append(all_data[i+sequence_len])

X = np.array(X)

Y = np.array(Y)

from sklearn.model_selection import train_test_split

默认shufft

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.05)

from sklearn import svm

SVR = svm.SVR()

SVR.fit(X_train, Y_train)

Y_predict = SVR.predict(X_test)

预测的值

Y_test_predict = Y_predict

真实值

Y_test_real = Y_test

fig = plt.figure(figsize=(15, 6))

fig.suptitle(data_set_name)

x = np.arange(100, 150, 1)

plt.subplots_adjust(wspace =0, hspace =0.5)#调整子图间距

plt.subplot(2,1,1)

plt.plot(x,Y_test_predict[100:150],label="预测值")

plt.plot(x,Y_test_real[100:150],label="真实值")

plt.ylabel('流量大小(Mb)')

plt.legend(loc=1,ncol=1)

plt.subplot(2,1,2)

plt.ylabel('流量大小(Mb)')

plt.plot(Y_test_predict,label="预测值")

plt.plot(Y_test_real,label="真实值")

#指定图例位置,1右上角,2左上角,3右下角,4左下角,0自动适应图像

plt.legend(loc=0,ncol=1)

plt.legend(loc=1,ncol=1)

plt.savefig(data_set_name+"_svm_predict.png",dpi=400)

相关推荐
大闲在人8 分钟前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋11 分钟前
443. 压缩字符串-python-双指针
算法
Charlie_lll21 分钟前
力扣解题-移动零
后端·算法·leetcode
chaser&upper22 分钟前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
weixin_4997715530 分钟前
C++中的组合模式
开发语言·c++·算法
iAkuya1 小时前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼1 小时前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck1 小时前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆1 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
java干货1 小时前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法