2025暑期—07深度学习应用-总结

人有自动选取卷积核的能力,传统的图像处理不能自动选取卷积核

非线性作用函数,Sigmoid由于梯度消失使用Relu。卷积神经网络的卷积核是未知的,自适应的。其中的权重是不断变化的,就是卷积核是不断变化的。

卷积模糊了,池化又清楚了,冗余信息没有了,卷积后又大量冗余信息,池化有可能损失信息,也可能基本没损失。

怎么调试权值,核心是自适应调节,反向传播。卷积层系数调节,3X3滤波器,+通道数,例如VGG。类似BP。只是加了求和。现在基本用ResNet改型。

神经网络训练90%不收敛。看到的用到的都是好用的结构或模型。

先又数据集,再调算法。

相关推荐
初学小刘4 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
2301_821919926 小时前
深度学习(四)
pytorch·深度学习
可触的未来,发芽的智生6 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
悟乙己7 小时前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
WWZZ20257 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
孤狼灬笑7 小时前
深度学习经典分类(算法分析与案例)
rnn·深度学习·算法·cnn·生成模型·fnn
Element_南笙7 小时前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理
星期天要睡觉8 小时前
深度学习——循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析
人工智能·python·rnn·深度学习·神经网络
koo3648 小时前
李宏毅机器学习笔记21-26周汇总
人工智能·笔记·机器学习