使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_score

mnist = fetch_openml('mnist_784', version=1, parser='auto')

X, y = mnist['data'], mnist['target']

X = np.array(X)
y = np.array(y)

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

y_train_5 = (y_train=='5')
y_test_5 = (y_test=='5')

clf = SGDClassifier(random_state=42)
clf.fit(X_train,y_train_5)

result_X_66666 = clf.predict([X[66666]])
print(result_X_66666)

image = X[66666].reshape(28, 28)
plt.imshow(image, cmap='gray') # 图像以灰度模式显示
plt.show()

result_cross_val_score= cross_val_score(clf, X_train, y_train_5, cv=3)
print(result_cross_val_score)

1. 下图报错也许是因为尝试使用shuffle_index数组来索引X_train[]DataFrame时,该索引数组中的值被误解。将X和y转换为numpy数组,然后再进行随机洗牌操作,解决报错。

X = np.array(X)

y = np.array(y)

2. shuffle_index = np.random.permutation(60000)

random.permutation函数生成一个长度为60000的随机排列数组。这个数组shuffle_index可以用于打乱数据集,确保数据的随机性。

3. 以图片形式显示X[66666]

image = X[66666].reshape(28, 28)

plt.imshow(image, cmap='gray')

plt.show()

4. clf = SGDClassifier(random_state=42)

random_state参数是许多算法中用于控制随机数生成的种子值的一个常见参数。通过设置random_state为一个固定的整数值,可以确保代码的随机性部分是可重复的,这意味着每次运行代码时,如果输入数据不变,使用相同的random_state值将得到完全相同的结果。

5. 结果​​​​​​​

6. 学习视频

4-交叉验证实验分析_哔哩哔哩_bilibili

相关推荐
路溪非溪2 天前
机器学习:更多分类回归算法之决策树、SVM、KNN
机器学习·分类·回归
jerwey3 天前
大语言模型(LLM)按架构分类
人工智能·语言模型·分类
微学AI3 天前
遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法
深度学习·分类·cnn
拓端研究室3 天前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
彭祥.3 天前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类
生态遥感监测笔记3 天前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
遇雪长安4 天前
差分定位技术:原理、分类与应用场景
算法·分类·数据挖掘·rtk·差分定位
是Dream呀4 天前
基于连接感知的实时困倦分类图神经网络
神经网络·分类·数据挖掘
Blossom.1184 天前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn