使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_score

mnist = fetch_openml('mnist_784', version=1, parser='auto')

X, y = mnist['data'], mnist['target']

X = np.array(X)
y = np.array(y)

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

y_train_5 = (y_train=='5')
y_test_5 = (y_test=='5')

clf = SGDClassifier(random_state=42)
clf.fit(X_train,y_train_5)

result_X_66666 = clf.predict([X[66666]])
print(result_X_66666)

image = X[66666].reshape(28, 28)
plt.imshow(image, cmap='gray') # 图像以灰度模式显示
plt.show()

result_cross_val_score= cross_val_score(clf, X_train, y_train_5, cv=3)
print(result_cross_val_score)

1. 下图报错也许是因为尝试使用shuffle_index数组来索引X_train[]DataFrame时,该索引数组中的值被误解。将X和y转换为numpy数组,然后再进行随机洗牌操作,解决报错。

X = np.array(X)

y = np.array(y)

2. shuffle_index = np.random.permutation(60000)

random.permutation函数生成一个长度为60000的随机排列数组。这个数组shuffle_index可以用于打乱数据集,确保数据的随机性。

3. 以图片形式显示X[66666]

image = X[66666].reshape(28, 28)

plt.imshow(image, cmap='gray')

plt.show()

4. clf = SGDClassifier(random_state=42)

random_state参数是许多算法中用于控制随机数生成的种子值的一个常见参数。通过设置random_state为一个固定的整数值,可以确保代码的随机性部分是可重复的,这意味着每次运行代码时,如果输入数据不变,使用相同的random_state值将得到完全相同的结果。

5. 结果​​​​​​​

6. 学习视频

4-交叉验证实验分析_哔哩哔哩_bilibili

相关推荐
xuehaikj6 小时前
【深度学习】YOLOv10n-MAN-Faster实现包装盒flap状态识别与分类,提高生产效率
深度学习·yolo·分类
AI街潜水的八角6 小时前
深度学习杂草分割系统1:数据集说明(含下载链接)
人工智能·深度学习·分类
月下倩影时14 小时前
视觉学习篇——理清机器学习:分类、流程与技术家族的关系
学习·机器学习·分类
算法与编程之美14 小时前
探索不同的优化器、损失函数、batch_size对分类精度影响
人工智能·机器学习·计算机视觉·分类·batch
甄心爱学习1 天前
数据挖掘11-分类的高级方法
人工智能·算法·分类·数据挖掘
qunshankeji2 天前
YOLOv8-SOEP-RFPN-MFM水果智能分类与检测模型实现
yolo·分类·数据挖掘
m0_462605223 天前
第N5周:Pytorch文本分类入门
人工智能·pytorch·分类
极客学术工坊3 天前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
Learn Beyond Limits3 天前
Regression vs. Classification|回归vs分类
人工智能·python·算法·ai·分类·数据挖掘·回归
zhangfeng11333 天前
学习文本大模型的学习路径,各种大模型对比和分类以及各个大模型对硬件的要求,开源大模型有哪些
学习·分类·开源