使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_score

mnist = fetch_openml('mnist_784', version=1, parser='auto')

X, y = mnist['data'], mnist['target']

X = np.array(X)
y = np.array(y)

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

y_train_5 = (y_train=='5')
y_test_5 = (y_test=='5')

clf = SGDClassifier(random_state=42)
clf.fit(X_train,y_train_5)

result_X_66666 = clf.predict([X[66666]])
print(result_X_66666)

image = X[66666].reshape(28, 28)
plt.imshow(image, cmap='gray') # 图像以灰度模式显示
plt.show()

result_cross_val_score= cross_val_score(clf, X_train, y_train_5, cv=3)
print(result_cross_val_score)

1. 下图报错也许是因为尝试使用shuffle_index数组来索引X_train[]DataFrame时,该索引数组中的值被误解。将X和y转换为numpy数组,然后再进行随机洗牌操作,解决报错。

X = np.array(X)

y = np.array(y)

2. shuffle_index = np.random.permutation(60000)

random.permutation函数生成一个长度为60000的随机排列数组。这个数组shuffle_index可以用于打乱数据集,确保数据的随机性。

3. 以图片形式显示X[66666]

image = X[66666].reshape(28, 28)

plt.imshow(image, cmap='gray')

plt.show()

4. clf = SGDClassifier(random_state=42)

random_state参数是许多算法中用于控制随机数生成的种子值的一个常见参数。通过设置random_state为一个固定的整数值,可以确保代码的随机性部分是可重复的,这意味着每次运行代码时,如果输入数据不变,使用相同的random_state值将得到完全相同的结果。

5. 结果​​​​​​​

6. 学习视频

4-交叉验证实验分析_哔哩哔哩_bilibili

相关推荐
Lun3866buzha16 小时前
大型铸件表面缺陷检测与分类_YOLO11-C2BRA应用实践
人工智能·分类·数据挖掘
黑客思维者17 小时前
一文读懂神经网络分类:从基础架构到前沿融合
人工智能·神经网络·分类
Wuhan87827211m18 小时前
微生物细胞检测与识别 大肠杆菌E.coli和其他细菌细胞自动检测与分类 RetinaNet+RegNet模型实现
人工智能·分类·数据挖掘
Loacnasfhia918 小时前
YOLOv8-CSFCN风力发电机叶片表面缺陷检测与分类实现详解
yolo·目标跟踪·分类
超龄超能程序猿18 小时前
YOLOv8中分类与目标检测模型训练的对比
yolo·目标检测·分类
qq_124987075319 小时前
基于spark的新闻文本分类系统(源码+论文+部署+安装)
大数据·分类·数据挖掘·spark
Katecat996631 天前
夜间收费站与道路场景多类型车辆检测与分类:基于Faster R-CNN R50 PAFPN的实现_1
分类·r语言·cnn
adaAS14143152 天前
YOLO11-ReCalibrationFPN-P345实现酒液品牌识别与分类_1
人工智能·分类·数据挖掘
罗小罗同学2 天前
基于虚拟染色的病理切片进行癌症分类,准确率可达到95.9%,在统计学上逼近真实染色的金标准,两小时可处理100张切片
人工智能·分类·数据挖掘·医学图像处理·医学人工智能
Katecat996632 天前
背胶条分类识别:基于计算机视觉的修复状态差异检测与质量评估系统
计算机视觉·分类·数据挖掘