使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_score

mnist = fetch_openml('mnist_784', version=1, parser='auto')

X, y = mnist['data'], mnist['target']

X = np.array(X)
y = np.array(y)

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

y_train_5 = (y_train=='5')
y_test_5 = (y_test=='5')

clf = SGDClassifier(random_state=42)
clf.fit(X_train,y_train_5)

result_X_66666 = clf.predict([X[66666]])
print(result_X_66666)

image = X[66666].reshape(28, 28)
plt.imshow(image, cmap='gray') # 图像以灰度模式显示
plt.show()

result_cross_val_score= cross_val_score(clf, X_train, y_train_5, cv=3)
print(result_cross_val_score)

1. 下图报错也许是因为尝试使用shuffle_index数组来索引X_train[]DataFrame时,该索引数组中的值被误解。将X和y转换为numpy数组,然后再进行随机洗牌操作,解决报错。

X = np.array(X)

y = np.array(y)

2. shuffle_index = np.random.permutation(60000)

random.permutation函数生成一个长度为60000的随机排列数组。这个数组shuffle_index可以用于打乱数据集,确保数据的随机性。

3. 以图片形式显示X[66666]

image = X[66666].reshape(28, 28)

plt.imshow(image, cmap='gray')

plt.show()

4. clf = SGDClassifier(random_state=42)

random_state参数是许多算法中用于控制随机数生成的种子值的一个常见参数。通过设置random_state为一个固定的整数值,可以确保代码的随机性部分是可重复的,这意味着每次运行代码时,如果输入数据不变,使用相同的random_state值将得到完全相同的结果。

5. 结果​​​​​​​

6. 学习视频

4-交叉验证实验分析_哔哩哔哩_bilibili

相关推荐
㱘郳4 小时前
cifar10分类对比:使用PyTorch卷积神经网络和SVM
pytorch·分类·cnn
非门由也4 小时前
《sklearn机器学习——聚类性能指标》Fowlkes-Mallows 得分
机器学习·聚类·sklearn
Daisy_JuJuJu15 小时前
【科研成果速递-IJGIS】如何描述与分类移动对象的时空模式?一个新的分类框架与体系!
分类·数据挖掘·科研·运动模式·移动对象
非门由也15 小时前
《sklearn机器学习——绘制分数以评估模型》验证曲线、学习曲线
人工智能·机器学习·sklearn
JJJJ_iii15 小时前
【左程云算法03】对数器&算法和数据结构大致分类
数据结构·算法·分类
赴33519 小时前
残差网络 迁移学习对食物分类案例的改进
人工智能·分类·迁移学习·resnet18
THMAIL1 天前
机器学习从入门到精通 - Transformer颠覆者:BERT与预训练模型实战解析
python·随机森林·机器学习·分类·bootstrap·bert·transformer
非门由也1 天前
《sklearn机器学习——聚类性能指标》Silhouette 系数
机器学习·聚类·sklearn
荼蘼2 天前
迁移学习实战:基于 ResNet18 的食物分类
机器学习·分类·迁移学习
玉木子2 天前
机器学习(七)决策树-分类
决策树·机器学习·分类