使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_score

mnist = fetch_openml('mnist_784', version=1, parser='auto')

X, y = mnist['data'], mnist['target']

X = np.array(X)
y = np.array(y)

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

y_train_5 = (y_train=='5')
y_test_5 = (y_test=='5')

clf = SGDClassifier(random_state=42)
clf.fit(X_train,y_train_5)

result_X_66666 = clf.predict([X[66666]])
print(result_X_66666)

image = X[66666].reshape(28, 28)
plt.imshow(image, cmap='gray') # 图像以灰度模式显示
plt.show()

result_cross_val_score= cross_val_score(clf, X_train, y_train_5, cv=3)
print(result_cross_val_score)

1. 下图报错也许是因为尝试使用shuffle_index数组来索引X_train[]DataFrame时,该索引数组中的值被误解。将X和y转换为numpy数组,然后再进行随机洗牌操作,解决报错。

X = np.array(X)

y = np.array(y)

2. shuffle_index = np.random.permutation(60000)

random.permutation函数生成一个长度为60000的随机排列数组。这个数组shuffle_index可以用于打乱数据集,确保数据的随机性。

3. 以图片形式显示X[66666]

image = X[66666].reshape(28, 28)

plt.imshow(image, cmap='gray')

plt.show()

4. clf = SGDClassifier(random_state=42)

random_state参数是许多算法中用于控制随机数生成的种子值的一个常见参数。通过设置random_state为一个固定的整数值,可以确保代码的随机性部分是可重复的,这意味着每次运行代码时,如果输入数据不变,使用相同的random_state值将得到完全相同的结果。

5. 结果​​​​​​​

6. 学习视频

4-交叉验证实验分析_哔哩哔哩_bilibili

相关推荐
FL162386312916 小时前
[C#]winform使用纯opencvsharp部署yolo26-cls图像分类的onnx模型
开发语言·分类·c#
ZCXZ12385296a16 小时前
YOLOv11创新改进系列_CSP与PMSFA注意力机制融合_表面损伤严重程度检测与分类
yolo·分类·数据挖掘
duyinbi751718 小时前
基于改进Mask R-CNN和RegNetX的茄子品质智能检测分类系统_2
人工智能·分类·cnn
AAD5558889918 小时前
木材缺陷检测与分类:基于FreeAnchor-X101的智能识别系统_1
人工智能·目标跟踪·分类
Katecat9966318 小时前
钻斗设备部件识别与分类_yolo12-A2C2f-DFFN模型详解与应用
人工智能·分类·数据挖掘
2501_9413370618 小时前
耳部疾病图像识别与分类:基于FreeAnchor与X101模型的实现
人工智能·分类·数据挖掘
qunaa010118 小时前
结膜区域检测与分类:穹窿部、睑结膜和睑板部结膜识别定位技术研究
人工智能·分类·数据挖掘
Fasda123451 天前
基于yolov10n的西瓜成熟度智能检测与分类系统实现详解
yolo·分类·数据挖掘
ZCXZ12385296a1 天前
使用YOLOv8-seg和HGNetV2进行鼠鱼种类识别与分类
yolo·分类·数据挖掘
ZCXZ12385296a1 天前
YOLO13改进模型C3k2-SFHF实现:阻尼器类型识别与分类系统详解
人工智能·分类·数据挖掘