备战蓝桥杯---动态规划(基础3)

本专题主要介绍在求序列的经典问题上dp的应用。

我们上次用前缀和来解决,这次让我们用dp解决把

我们参考不下降子序列的思路,可以令f[i]为以i结尾的最大字段和,易得:

f[i]=max(a[i],a[i]+f[i-1]);

下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int a[200010],dp[200010],n,ans=-9999999;
int main(){
	cin>>n;
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	dp[1]=a[1];
	for(int i=2;i<=n;i++){
		dp[i]=max(a[i],a[i]+dp[i-1]);
		ans=max(ans,dp[i]);
	}
	ans=max(ans,dp[1]);
	cout<<ans;
}

接题:

因为是求两个序列,我们把dp弄成二维。

我们令f[i][j]为第一个序列前i个与第二个序列前j个的最长公共子序列。

我们可以得出:当两个序列后面加了一个数,那么如果用到了其中一个,那么那个子序列一定就结束了,因为如果后面还有的话其中一个序列一定不符合(因为它后面已经没数了)

根据这个,我们知道如果加的数不同,相当于只有其中一个发挥作用,我们取两个max即可

于是,当s1[i]==s2[j]时f[i][j]=1+f[i-1][j-1];

当s1[i]!=s2[j]时 f[i][j]=max(f[i-1][j],f[i][j-1])

对于初始条件

s1[1]==s2[1] f[1][1]=1;

s1[1]!=s2[1] f[1][1]=0;

下面是AC代码:

cpp 复制代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
string s1,s2;
int dp[1000][1000];
int main(){
	while(cin>>s1>>s2){
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=s1.length();i++){
			for(int j=1;j<=s2.length();j++){
				if(s1[i-1]==s2[j-1]) dp[i][j]=1+dp[i-1][j-1];
				else{
					dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				}
			}
		}
		printf("%d\n",dp[s1.length()][s2.length()]);
	}
}
相关推荐
代码小将11 分钟前
Leetcode134加油站
笔记·算法
计算机毕设源码分享88888837 分钟前
番茄采摘机器人的视觉系统设计
人工智能·算法·机器人
DARLING Zero two♡1 小时前
C++寻位映射的奇幻密码:哈希
c++·哈希算法
gyeolhada1 小时前
2025蓝桥杯JAVA编程题练习Day8
java·数据结构·算法·蓝桥杯
freyazzr1 小时前
Leetcode刷题 | Day60_图论06
数据结构·c++·算法·leetcode·图论
AI technophile1 小时前
OpenCV计算机视觉实战(6)——经典计算机视觉算法
opencv·算法·计算机视觉
qq_584598921 小时前
day30python打卡
开发语言·人工智能·python·算法·机器学习
zhangpeng4555479401 小时前
C++--综合应用-演讲比赛项目
开发语言·c++·算法
霜羽68921 小时前
【数据结构篇】排序1(插入排序与选择排序)
数据结构·算法·排序算法
啊我不会诶2 小时前
CF每日4题(1300-1400)
开发语言·c++·算法