备战蓝桥杯---动态规划(基础3)

本专题主要介绍在求序列的经典问题上dp的应用。

我们上次用前缀和来解决,这次让我们用dp解决把

我们参考不下降子序列的思路,可以令f[i]为以i结尾的最大字段和,易得:

f[i]=max(a[i],a[i]+f[i-1]);

下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int a[200010],dp[200010],n,ans=-9999999;
int main(){
	cin>>n;
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	dp[1]=a[1];
	for(int i=2;i<=n;i++){
		dp[i]=max(a[i],a[i]+dp[i-1]);
		ans=max(ans,dp[i]);
	}
	ans=max(ans,dp[1]);
	cout<<ans;
}

接题:

因为是求两个序列,我们把dp弄成二维。

我们令f[i][j]为第一个序列前i个与第二个序列前j个的最长公共子序列。

我们可以得出:当两个序列后面加了一个数,那么如果用到了其中一个,那么那个子序列一定就结束了,因为如果后面还有的话其中一个序列一定不符合(因为它后面已经没数了)

根据这个,我们知道如果加的数不同,相当于只有其中一个发挥作用,我们取两个max即可

于是,当s1[i]==s2[j]时f[i][j]=1+f[i-1][j-1];

当s1[i]!=s2[j]时 f[i][j]=max(f[i-1][j],f[i][j-1])

对于初始条件

s1[1]==s2[1] f[1][1]=1;

s1[1]!=s2[1] f[1][1]=0;

下面是AC代码:

cpp 复制代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
string s1,s2;
int dp[1000][1000];
int main(){
	while(cin>>s1>>s2){
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=s1.length();i++){
			for(int j=1;j<=s2.length();j++){
				if(s1[i-1]==s2[j-1]) dp[i][j]=1+dp[i-1][j-1];
				else{
					dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				}
			}
		}
		printf("%d\n",dp[s1.length()][s2.length()]);
	}
}
相关推荐
程序喵大人2 小时前
推荐个C++高性能内存分配器
开发语言·c++·内存分配
zephyr052 小时前
深入浅出C++多态:从虚函数到动态绑定的完全指南
开发语言·c++
算法与编程之美2 小时前
提升minist的准确率并探索分类指标Precision,Recall,F1-Score和Accuracy
人工智能·算法·机器学习·分类·数据挖掘
MicroTech20252 小时前
微算法科技(NASDAQ :MLGO)混合共识算法与机器学习技术:重塑区块链安全新范式
科技·算法·区块链
码力码力我爱你2 小时前
C++静态变量依赖关系
java·jvm·c++
李牧九丶2 小时前
从零学算法1334
前端·算法
在繁华处2 小时前
C语言经典算法:汉诺塔问题
c语言·算法
加勒比之杰克3 小时前
【C++11】Lambda 表达式、可变参数、emplace_back 系列
开发语言·c++·lambda·emplace_back·可变参数模版
Bona Sun3 小时前
单片机手搓掌上游戏机(十一)—esp8266运行gameboy模拟器之硬件连接
c语言·c++·单片机·游戏机
思成不止于此3 小时前
【C++ 数据结构】二叉搜索树:原理、实现与核心操作全解析
开发语言·数据结构·c++·笔记·学习·搜索二叉树·c++40周年