备战蓝桥杯---动态规划(基础3)

本专题主要介绍在求序列的经典问题上dp的应用。

我们上次用前缀和来解决,这次让我们用dp解决把

我们参考不下降子序列的思路,可以令f[i]为以i结尾的最大字段和,易得:

f[i]=max(a[i],a[i]+f[i-1]);

下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int a[200010],dp[200010],n,ans=-9999999;
int main(){
	cin>>n;
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	dp[1]=a[1];
	for(int i=2;i<=n;i++){
		dp[i]=max(a[i],a[i]+dp[i-1]);
		ans=max(ans,dp[i]);
	}
	ans=max(ans,dp[1]);
	cout<<ans;
}

接题:

因为是求两个序列,我们把dp弄成二维。

我们令f[i][j]为第一个序列前i个与第二个序列前j个的最长公共子序列。

我们可以得出:当两个序列后面加了一个数,那么如果用到了其中一个,那么那个子序列一定就结束了,因为如果后面还有的话其中一个序列一定不符合(因为它后面已经没数了)

根据这个,我们知道如果加的数不同,相当于只有其中一个发挥作用,我们取两个max即可

于是,当s1[i]==s2[j]时f[i][j]=1+f[i-1][j-1];

当s1[i]!=s2[j]时 f[i][j]=max(f[i-1][j],f[i][j-1])

对于初始条件

s1[1]==s2[1] f[1][1]=1;

s1[1]!=s2[1] f[1][1]=0;

下面是AC代码:

cpp 复制代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
string s1,s2;
int dp[1000][1000];
int main(){
	while(cin>>s1>>s2){
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=s1.length();i++){
			for(int j=1;j<=s2.length();j++){
				if(s1[i-1]==s2[j-1]) dp[i][j]=1+dp[i-1][j-1];
				else{
					dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				}
			}
		}
		printf("%d\n",dp[s1.length()][s2.length()]);
	}
}
相关推荐
车企求职辅导6 分钟前
新能源汽车零部件全品类汇总
人工智能·算法·车载系统·自动驾驶·汽车·智能驾驶·智能座舱
Trouvaille ~12 分钟前
【C++篇】C++11新特性详解(一):基础特性与类的增强
c++·stl·c++11·类和对象·语法·默认成员函数·初始化列表
HUST12 分钟前
C 语言 第九讲:函数递归
c语言·开发语言·数据结构·算法·c#
yaoh.wang13 分钟前
力扣(LeetCode) 119: 杨辉三角 II - 解法思路
数据结构·python·算法·leetcode·面试·职场和发展·跳槽
CSDN_RTKLIB16 分钟前
【类定义系列一】C++ 头文件 / 源文件分离
开发语言·c++
CoderCodingNo18 分钟前
【GESP】C++五级真题(埃氏筛思想考点) luogu-B3929 [GESP202312 五级] 小杨的幸运数
数据结构·c++·算法
charlee4421 分钟前
C++中JSON序列化和反序列化的实现
c++·json·序列化·结构体·nlohmann/json
机器学习之心28 分钟前
基于PSO-GA混合算法的施工进度计划多目标优化,以最小化总成本并实现资源均衡,满足工期约束和资源限制,MATLAB代码
算法·matlab·多目标优化·pso-ga混合算法
bbq粉刷匠30 分钟前
Java--二叉树概念及其基础应用
java·数据结构·算法
CodeByV32 分钟前
【算法题】前缀和
算法