【从零开始学习 RAG 】01:LLamaIndex 基本概念

【从零开始学习 RAG 】01:LLamaIndex 基本概念

从0开始的llamaindex学习,不能只学langchain一个框架:

今天从 llamaindex 表达数据的基本类型 Documents 和 Nodes 开始

0. 环境配置

我主要使用 LM Studio 本地运行LLM。LM Studio 最大的优势在于可以适配 OpenAI API 接口,这样就可以很方便在本地调试成功后,后续只需要轻微的修改就可以切换到 OpenAI API 了。

LM Studio 在启动 Server 的时候,很贴心地提供了调用 API 的代码,以下实践都是基于此进行修改的。

本次测试使用到的模型是 mistralai/Mixtral-8x7B-Instruct-v0.1 · Hugging Face。在实际使用中接近 GPT3.5。作为本地测试模型性能完全足够了。

1. Documents 和 Nodes

Documents

Documents 是 llamaindex 中描述文件的基本类型,它是"任意类型文件"的存储容器。这些文件可以是"pdf文本"、"图片",甚至是"向量数据"。

Documents 存储着 2 个核心"元数据":

  • metadata​ - a dictionary of annotations that can be appended to the text.

    • 描述 Document 的基本信息
  • relationships​ - a dictionary containing relationships to other Documents/Nodes.

    • 文件的"关系",一般用于表示多个 Document 之间的关系上
    • 多个 Document 节点可以根据 Relationship 组合成"网状结构"

测试 Documents 的代码:

py 复制代码
# https://docs.llamaindex.ai/en/stable/module_guides/loading/documents_and_nodes/root.html
# Document is the important type in the LLaMaIndex

from llama_index import SimpleDirectoryReader

# load data from file
document = SimpleDirectoryReader(
    input_files=["./data/king.dreamspeech.excerpts.pdf"]
).load_data()

# Look into the type of "Document"
print(type(document), '\n')
print(len(document), '\n')
print(type(document[0]), '\n')
print(document[0])
  • 通过 SimpleDirectoryReader 读取文本文件,作为 Document 的赋值

Nodes

以上仅仅是"加载好数据"而已,但是对于 RAG 系统存储数据的形式来说,Document 并不是最终的结果。在向量数据库中,数据都以"分块"的形式进行存储,英文翻译为"chunk"。

不过在 llamaindex 中,这一概念解释为"Node"。

"Node"在 llamaindex 中是 Document 的一个"组成部分"。单一的 Document 会被算法切分为多个 Node 进行存储。

同样,对于 Node 来说,它也拥有 metadata 和 relationship 等元数据。也意味着多个 node 可以组合成"网状信息结构"。

测试代码:

py 复制代码
# https://docs.llamaindex.ai/en/stable/module_guides/loading/documents_and_nodes/root.html
from llama_index import SimpleDirectoryReader
from llama_index.node_parser import SentenceSplitter

# load data from file
document = SimpleDirectoryReader(
    input_files=["./data/king.dreamspeech.excerpts.pdf"]
).load_data()

# get nodes from document
parser = SentenceSplitter(
    chunk_size=100,
    chunk_overlap=10,
)
nodes = parser.get_nodes_from_documents(document)

# Look into the type of "Node"
print(type(nodes), '\n')
print(len(nodes), '\n')
print(type(nodes[0]), '\n')
print(nodes[0])

for i in range(len(nodes)):
    print(nodes[i], '\n')

一部分的数据结果:

py 复制代码
Node ID: 55034aee-9a47-4458-b2a8-2ede141552fd
Text: No, no, we are not satisfied, and we will not be satisfied until
justice rolls down like wat ers and  righteousness like a mighty
stream.  . . .  I say to you today, my friends, though, even though we
face the difficulties of today and tomorrow, I still

Node ID: 333dbfac-dfae-442b-99bf-d2b0d71cd59d
Text: ©2014 The Gilder Lehrman Institute of American History
www.gilderlehrman.org  have a dream. It is a dream deeply rooted in
the American dream. I have a dream that one day this  nation will rise
up, live out the true meaning of its creed: "We hold these truths to
be  self- evident,

项目源代码

相关推荐
一 铭2 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
AI大模型5 小时前
LangGraph官方文档笔记(七)——Agent的输入输出
langchain·llm·agent
knqiufan6 小时前
深度解析影响 RAG 召回率的四大支柱——模型、数据、索引与检索
llm·milvus·向量数据库·rag
墨风如雪9 小时前
从一张图到一座城?Hitem3D 要用 1536³ 分辨率“炸”翻 3D 建模圈!
aigc
小爷毛毛_卓寿杰13 小时前
突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解
人工智能·llm
磊叔的技术博客13 小时前
LLM 系列(六):模型推理篇
人工智能·面试·llm
win4r16 小时前
🚀 SuperClaude让Claude Code编程能力暴增300%!小白秒变顶尖程序员!19个专业命令+9大预定义角色,零编程经验也能开发复杂项目,完全碾
aigc·ai编程·claude
redreamSo19 小时前
AI Daily | AI日报:Nature:超14%生物医学论文或由AI代写; Grok 4测试成绩优异,数据真实性引争议; 李飞飞:攻克空间智能,为AGI补拼图
程序员·aigc·资讯
PetterHillWater19 小时前
阿里云CodeUp集成大模型自动代码审查
aigc
砖厂小工20 小时前
向量数据库——移动 AI 搜图,分类的新助手
aigc