[PyTorch]PyTorch中张量(Tensor)拼接和拆分操作

PyTorch深度学习总结

第四章 PyTorch中张量(Tensor)拼接和拆分操作


文章目录


前言

上文介绍了PyTorch中张量(Tensor)的切片操作,本文主要介绍张量的拆分拼接操作。


一、张量拼接

函数 描述
torch.cat() 将张量按照指定维度关系进行拼接
torch.stack() 将张量按照指定维度关系进行拼接(用法同cat相同
python 复制代码
# 引入库
import torch

# 创建张量
A = torch.arange(9).reshape(1, 3, 3)
print(A)

输出结果为:

tensor(

\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度1进行拼接:** ```python B0 = torch.cat((A, A), dim=0) print(B0) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\], \[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度2(`行`)进行拼接:** ```python B1 = torch.cat((A, A), dim=2) print(B1) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\], \[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度3(`列`)进行拼接:** ```python B2 = torch.cat((A, A), dim=2) print(B2) ``` 输出结果为: tensor(\[\[\[0, 1, 2, 0, 1, 2\], \[3, 4, 5, 3, 4, 5\], \[6, 7, 8, 6, 7, 8\]\]\])

二、张量拆分

函数 描述
torch.chunk() 将张量分割为特定数量的块(当张量对应维度元素数量不足以拆分时会按照可以拆分数量进行拆分,且会出现不均等拆分情况)
torch.split() 将张量分割为特定数量的块,可以指定块的大小

注意:
torch.chunk():当张量对应维度元素数量不足以拆分时,会按照可以拆分的最大数量进行拆分,且会出现不均等拆分情况,且最后一个块最小

下文使用B0进行示例

复制代码
B0 = tensor([[[0, 1, 2],
         [3, 4, 5],
         [6, 7, 8]],
        [[0, 1, 2],
         [3, 4, 5],
         [6, 7, 8]]])

1、torch.chunk()按照维度1进行拆分:

python 复制代码
C1, C2 = torch.chunk(B0, 2, dim=1) # 维度1只有三组元素,所以会按照2:1的比例进行拆分
print(C1, C2)

输出结果为:

tensor([[[0, 1, 2],

3, 4, 5\], \[6, 7, 8\]\]\]) tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、`torch.chunk()`按照维度2进行拆分:** ```python D1, D2 = torch.chunk(B0, 2, dim=1) # 3表示指定拆分数,但由于不足以拆分,所以只会拆分两组 print(D1, D2) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\]\], \[\[0, 1, 2\], \[3, 4, 5\]\]\]) tensor(\[\[\[6, 7, 8\]\], \[\[6, 7, 8\]\]\])

相关推荐
落羽凉笙3 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Light603 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升3 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
天远Date Lab3 小时前
Python实战:对接天远数据手机号码归属地API,实现精准用户分群与本地化运营
大数据·开发语言·python
natide3 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农3 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews3 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
哈里谢顿3 小时前
Python异常链:谁才是罪魁祸首?一探"The above exception"的时间顺序
python
脑极体4 小时前
机器人的罪与罚
人工智能·机器人
三不原则4 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes