[PyTorch]PyTorch中张量(Tensor)拼接和拆分操作

PyTorch深度学习总结

第四章 PyTorch中张量(Tensor)拼接和拆分操作


文章目录


前言

上文介绍了PyTorch中张量(Tensor)的切片操作,本文主要介绍张量的拆分拼接操作。


一、张量拼接

函数 描述
torch.cat() 将张量按照指定维度关系进行拼接
torch.stack() 将张量按照指定维度关系进行拼接(用法同cat相同
python 复制代码
# 引入库
import torch

# 创建张量
A = torch.arange(9).reshape(1, 3, 3)
print(A)

输出结果为:

tensor(

\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度1进行拼接:** ```python B0 = torch.cat((A, A), dim=0) print(B0) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\], \[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度2(`行`)进行拼接:** ```python B1 = torch.cat((A, A), dim=2) print(B1) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\], \[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度3(`列`)进行拼接:** ```python B2 = torch.cat((A, A), dim=2) print(B2) ``` 输出结果为: tensor(\[\[\[0, 1, 2, 0, 1, 2\], \[3, 4, 5, 3, 4, 5\], \[6, 7, 8, 6, 7, 8\]\]\])

二、张量拆分

函数 描述
torch.chunk() 将张量分割为特定数量的块(当张量对应维度元素数量不足以拆分时会按照可以拆分数量进行拆分,且会出现不均等拆分情况)
torch.split() 将张量分割为特定数量的块,可以指定块的大小

注意:
torch.chunk():当张量对应维度元素数量不足以拆分时,会按照可以拆分的最大数量进行拆分,且会出现不均等拆分情况,且最后一个块最小

下文使用B0进行示例

复制代码
B0 = tensor([[[0, 1, 2],
         [3, 4, 5],
         [6, 7, 8]],
        [[0, 1, 2],
         [3, 4, 5],
         [6, 7, 8]]])

1、torch.chunk()按照维度1进行拆分:

python 复制代码
C1, C2 = torch.chunk(B0, 2, dim=1) # 维度1只有三组元素,所以会按照2:1的比例进行拆分
print(C1, C2)

输出结果为:

tensor([[[0, 1, 2],

3, 4, 5\], \[6, 7, 8\]\]\]) tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、`torch.chunk()`按照维度2进行拆分:** ```python D1, D2 = torch.chunk(B0, 2, dim=1) # 3表示指定拆分数,但由于不足以拆分,所以只会拆分两组 print(D1, D2) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\]\], \[\[0, 1, 2\], \[3, 4, 5\]\]\]) tensor(\[\[\[6, 7, 8\]\], \[\[6, 7, 8\]\]\])

相关推荐
算AI1 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
JavaEdge在掘金1 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程5552 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
凯子坚持 c2 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
老歌老听老掉牙2 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀10152 小时前
Python入门(7):模块
python
无名之逆2 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust
你觉得2052 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
啊喜拔牙2 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
8K超高清2 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件