[PyTorch]PyTorch中张量(Tensor)拼接和拆分操作

PyTorch深度学习总结

第四章 PyTorch中张量(Tensor)拼接和拆分操作


文章目录


前言

上文介绍了PyTorch中张量(Tensor)的切片操作,本文主要介绍张量的拆分拼接操作。


一、张量拼接

函数 描述
torch.cat() 将张量按照指定维度关系进行拼接
torch.stack() 将张量按照指定维度关系进行拼接(用法同cat相同
python 复制代码
# 引入库
import torch

# 创建张量
A = torch.arange(9).reshape(1, 3, 3)
print(A)

输出结果为:

tensor(

\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度1进行拼接:** ```python B0 = torch.cat((A, A), dim=0) print(B0) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\], \[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度2(`行`)进行拼接:** ```python B1 = torch.cat((A, A), dim=2) print(B1) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\], \[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、按照维度3(`列`)进行拼接:** ```python B2 = torch.cat((A, A), dim=2) print(B2) ``` 输出结果为: tensor(\[\[\[0, 1, 2, 0, 1, 2\], \[3, 4, 5, 3, 4, 5\], \[6, 7, 8, 6, 7, 8\]\]\])

二、张量拆分

函数 描述
torch.chunk() 将张量分割为特定数量的块(当张量对应维度元素数量不足以拆分时会按照可以拆分数量进行拆分,且会出现不均等拆分情况)
torch.split() 将张量分割为特定数量的块,可以指定块的大小

注意:
torch.chunk():当张量对应维度元素数量不足以拆分时,会按照可以拆分的最大数量进行拆分,且会出现不均等拆分情况,且最后一个块最小

下文使用B0进行示例

复制代码
B0 = tensor([[[0, 1, 2],
         [3, 4, 5],
         [6, 7, 8]],
        [[0, 1, 2],
         [3, 4, 5],
         [6, 7, 8]]])

1、torch.chunk()按照维度1进行拆分:

python 复制代码
C1, C2 = torch.chunk(B0, 2, dim=1) # 维度1只有三组元素,所以会按照2:1的比例进行拆分
print(C1, C2)

输出结果为:

tensor([[[0, 1, 2],

3, 4, 5\], \[6, 7, 8\]\]\]) tensor(\[\[\[0, 1, 2\], \[3, 4, 5\], \[6, 7, 8\]\]\]) *** ** * ** *** **1、`torch.chunk()`按照维度2进行拆分:** ```python D1, D2 = torch.chunk(B0, 2, dim=1) # 3表示指定拆分数,但由于不足以拆分,所以只会拆分两组 print(D1, D2) ``` 输出结果为: tensor(\[\[\[0, 1, 2\], \[3, 4, 5\]\], \[\[0, 1, 2\], \[3, 4, 5\]\]\]) tensor(\[\[\[6, 7, 8\]\], \[\[6, 7, 8\]\]\])

相关推荐
mit6.82434 分钟前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域1 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
HAPPY酷2 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
Tiger Z2 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程
GoGeekBaird2 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
传奇开心果编程2 小时前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
别惹CC3 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
王者鳜錸4 小时前
PYTHON让繁琐的工作自动化-PYTHON基础
python·microsoft·自动化