OpenCV-36 多边形逼近与凸包

目录

一、多边形的逼近

二、凸包


一、多边形的逼近

findContours后的轮廓信息countours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,这就是轮廓的多边形逼近。

apporxPolyDP就是以多边形去逼近轮廓,采用的是Douglas-Peucker算法(方法名中的DP)

DP算法原理比较简单,核心就是不断去找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度(阈值)

approxPolyDP(curve, epsilon, closed[, approxCurvel])

  • curve 要逼近的轮廓
  • epsilon 即DP算法使用的阈值
  • closed 轮廓是否闭合

阈值越大,逼近效果越粗糙;阈值越小,逼近效果越好。

得到的approx本质是一个数组ndarray类型,因此画轮廓的时候需要加上[]变成列表类型。

示例代码如下:

复制代码
import cv2
import numpy as np
# 导入图片
hand = cv2.imread("hand.png")
# 变为单通道黑白图片
gray = cv2.cvtColor(hand, cv2.COLOR_BGR2GRAY)
# 二值化操作
ret, new_img = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(new_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 复制一份原图
hand_copy = hand.copy()
# 直接在img_copy上面操作
cv2.drawContours(hand_copy, contours, -1, (0, 0, 255), 2)
# 使用多边形逼近,近似模拟手的轮廓
approx = cv2.approxPolyDP(contours[2], 20, closed=True)
# approx本质上是一个轮廓数据,是一个ndarray类型
print(approx)
print(type(approx))
# 二contours是一个元组/列表类型
# 画出近似逼近的轮廓
cv2.drawContours(hand_copy, [approx], -1, (0, 255, 0), 2)
cv2.imshow("img", np.hstack((hand, hand_copy)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

二、凸包

逼近多边形是轮廓的高度近似,但是有时候,我们希望使用一个多边形的凸包来简化它。 凸包和逼近多边形很像,只不过它是物体最外层的凸多边形 。凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形。 凸包的每一处都凸的,即**在凸包内连接任意两点的直线都在凸包的内部。**在凸包内,任意连续三个点的内角小于180°。

convexHull(points[,hull [,clockwise[, returnpoints]]]])

  • points 即轮廓
  • colckwise 顺时针绘制

示例代码如下:

复制代码
import cv2
hand = cv2.imread("hand.png")
# 二值化操作
gray = cv2.cvtColor(hand, cv2.COLOR_BGR2GRAY)
# 二值化操作
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
cv2.drawContours(hand, contours, 0, (0, 0, 255), 2)
# 多边形逼近
approx = cv2.approxPolyDP(contours[2], 20, True)
# 画出多边形逼近的轮廓
cv2.drawContours(hand, [approx], 0, (0, 0, 255), 2)
# 计算凸包
hull = cv2.convexHull(contours[2])
# 画出凸包
cv2.drawContours(hand, [hull], 0, (255, 0, 0), 2)
cv2.imshow("hand", hand)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

相关推荐
北京耐用通信2 分钟前
“耐达讯自动化Profibus总线光端机在化工变频泵控制系统中的应用与价值解析”
人工智能·科技·物联网·网络安全·自动化·信息与通信
2401_865854883 分钟前
AI软件可以帮助我自动化哪些日常任务?
运维·人工智能·自动化
重启编程之路33 分钟前
python 基础学习socket -TCP编程
网络·python·学习·tcp/ip
WWZZ20251 小时前
快速上手大模型:深度学习7(实践:卷积层)
人工智能·深度学习·算法·机器人·大模型·卷积神经网络·具身智能
简佐义的博客1 小时前
Genome Biol. IF 9.4 Q1 | ATAC-seq 数据分析实用指南,根据本文就可以构建ATAC生信分析流程了
人工智能
云和数据.ChenGuang2 小时前
pycharm怎么将背景换成白色
ide·python·pycharm
老蒋新思维2 小时前
陈修超入局:解锁 AI 与 IP 融合的创新增长密码
网络·人工智能·网络协议·tcp/ip·企业管理·知识付费·创客匠人
我的xiaodoujiao2 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 25--数据驱动--参数化处理 Excel 文件 2
前端·python·学习·测试工具·ui·pytest
San30.2 小时前
从代码规范到 AI Agent:现代前端开发的智能化演进
javascript·人工智能·代码规范
DO_Community2 小时前
基于AI Agent模板:快速生成 SQL 测试数据
人工智能·python·sql·ai·llm·ai编程