使用R语言建立回归模型并分割训练集和测试集

通过简单的回归实例,可以说明数据分割为训练集和测试集的必要性。以下先建立示例数据:

R 复制代码
set.seed(123) #设置随机种子
x <- rnorm(100, 2, 1) # 生成100个正态分布的随机数,均值为2,标准差为1
y = exp(x) + rnorm(5, 0, 2) 
# 生成一个新的变量y,它是x的指数函数值加上5个正态分布的随机数
# 均值为0,标准差为2
plot(x, y)
linear <- lm(y ~ x)
abline(a = coef(linear)[1], b = coef(linear)[2], lty = 2)

查看建立的数据信息:

R 复制代码
summary(linear)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6481 -3.7122 -1.9390  0.9698 29.8283 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -13.6323     1.6335  -8.345 4.63e-13 ***
## x            11.9801     0.7167  16.715  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.51 on 98 degrees of freedom
## Multiple R-squared:  0.7403, Adjusted R-squared:  0.7377 
## F-statistic: 279.4 on 1 and 98 DF,  p-value: < 2.2e-16

接受一些x和y的模拟数据,然后绘制一个最贴切的线性模型。根据以上的出结果,多重R方值为0.738,越接近1越好。再试一下通过标准三七开的随机采样分割数据:

R 复制代码
data <- data.frame(x, y)
data.samples <- sample(1:nrow(data), nrow(data) * 0.7, replace = FALSE)
training.data <- data[data.samples, ]
test.data <- data[-data.samples, ]
train.linear <- lm(y ~ x, training.data)
train.output <- predict(train.linear, test.data)

计算均方根误差 ,根据输入x,比较y与测试集中的实际值,在评估时使用特定的因变量。可采用均方根误差作为测试指标:

R 复制代码
RMSE.df = data.frame(predicted = train.output, actual = test.data$y,
                     SE = ((train.output - test.data$y)^2/length(train.output)))
head(RMSE.df)
##    predicted    actual         SE
## 2   7.874300  6.383579 0.07407499
## 3  28.504227 34.624423 1.24855995
## 4  11.341893  7.233768 0.56255641
## 5  12.019753  6.505638 1.01351529
## 12 14.678243 11.102747 0.42613909
## 15  4.118657  2.335049 0.10604193
R 复制代码
sqrt(sum(RMSE.df$SE))
## [1] 6.946493
R 复制代码
train.quadratic <- lm(y ~ x^2 + x, training.data)
quadratic.output <- predict(train.quadratic, test.data)
RMSE.quad.df = data.frame(predicted = quadratic.output, actual = test.data$y, SE = ((quadratic.output - test.data$y)^2/length(train.output)))
head(RMSE.quad.df)
##    predicted    actual         SE
## 2   7.874300  6.383579 0.07407499
## 3  28.504227 34.624423 1.24855995
## 4  11.341893  7.233768 0.56255641
## 5  12.019753  6.505638 1.01351529
## 12 14.678243 11.102747 0.42613909
## 15  4.118657  2.335049 0.10604193
sqrt(sum(RMSE.quad.df$SE))
## [1] 6.946493

根据上述输出表明,将多项式从一次调整为二次有助于减少模型预测值与实际值之间的误差,接着再提高多项式的次数并查看对均方根误差的影响

R 复制代码
train.polyn <- lm(y ~ poly(x, 4), training.data)
polyn.output <- predict(train.polyn, test.data)
RMSE.quad.df = data.frame(predicted = polyn.output, actual = test.data$y,
                          SE = ((polyn.output - test.data$y)^2/length(train.output)))
head(RMSE.quad.df)
##    predicted    actual           SE
## 2   5.228193  6.383579 0.0444972216
## 3  34.410640 34.624423 0.0015234381
## 4   7.312166  7.233768 0.0002048764
## 5   7.789798  6.505638 0.0549688692
## 12  9.946884 11.102747 0.0445339986
## 15  3.482548  2.335049 0.0438918352
sqrt(sum(RMSE.quad.df$SE))
## [1] 0.8836878

与二次方程的拟合情况相比,可以看到均方根误差有所上升,符合用高次方程过度拟合数据的结果。

相关推荐
鸢尾掠地平12 分钟前
Python中常用内置函数上【含代码理解】
开发语言·python
api_1800790546024 分钟前
请求、认证与响应数据解析:1688 商品 API 接口深度探秘
java·大数据·开发语言·mysql·数据挖掘
唐古乌梁海27 分钟前
【Java】JVM 内存区域划分
java·开发语言·jvm
低调小一31 分钟前
Android Gradle 的 compileOptions 与 Kotlin jvmTarget 全面理解(含案例)
android·开发语言·kotlin
NEU-UUN40 分钟前
C语言 . 第三章第三节 . 变参函数
c语言·开发语言
hnxaoli1 小时前
win10程序(十四)pdf转docx简易版
开发语言·python·pdf
CodeCraft Studio1 小时前
PDF处理控件Aspose.PDF教程:在Python中向PDF文档添加页面
开发语言·python·pdf
ftpeak1 小时前
《Rust+Slint:跨平台GUI应用》第五章 基础元素
开发语言·ui·rust·slint
寻找华年的锦瑟1 小时前
Qt Quick Application&&Qt Quick Application (compat)
开发语言·qt
国服第二切图仔1 小时前
Rust开发实战之WebSocket通信实现(tokio-tungstenite)
开发语言·websocket·rust