深度学习(14)--x.view()详解

在torch中,常用view()函数来改变tensor的形状

查询官方文档:

torch.Tensor.view --- PyTorch 2.2 documentationhttps://pytorch.org/docs/stable/generated/torch.Tensor.view.html#torch.Tensor.view示例

1.创建一个4x4的二维数组进行测试

python 复制代码
x = torch.randn(4, 4)
print(x)
print(x.size())

(1).将二维数组变换为一维数组

python 复制代码
y = x.view(16)
print(y)
print(y.size())

(2).将二维数组变换为其他形式的二维数组

python 复制代码
z = x.view(2, 8)
print(z)
print(z.size())

(3).可以将其中一个参数设置为-1,view()会根据已设置的维度自动推断出另外一个维度的大小

复制代码
# the size -1 is inferred from other dimensions
python 复制代码
yy = x.view(-1, 8)
print(yy)
print(yy.size())

zz = x.view(8, -1)
print(zz)
print(zz.size())

可以看到分别得到了2x8的yy和8x2的zz,符合实际的情况。

2.创建一个1x2x3x4的四维矩阵进行测试

python 复制代码
x = torch.rand(1, 2, 3, 4)
print(x)
print(x.size())

(1).将四维数组变换为一维数组

python 复制代码
y = x.view(-1)
print(y)
print(y.size())

(2).将四维数组变换为二维数组

python 复制代码
z = x.view(2,-1)
print(z)
print(z.size())

(3).将四维数组变换为三维数组

python 复制代码
a = x.view(2, -1, 4)
print(a)
print(a.size())

(4).将四维数组转换为其他形式的四维数组

python 复制代码
b = x.view(1, 3, 2, 4)
print(b)
print(b.size())

值得注意的是view()函数并不改变tensor数据在内存中的层次

利用tranpose函数进行验证,transpose函数可以交换数据指定的维度:

python 复制代码
c = x.transpose(1, 2)
print(c)
print(c.size())

transpose(1,2)将第二个维度和第三个维度互换(四维对应的索引是0,1,2,3)

利用equal()函数判断b和c是否相同:

python 复制代码
print("b和c是否相等:")
print(torch.equal(b, c))

由如上结果可知,view()函数并不改变数据在内存中的层次。

相关推荐
AI蜗牛之家2 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上2 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
殇者知忧2 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
YunTM2 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
舒一笑3 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq4 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖5 小时前
神经网络-Day45
人工智能·深度学习·神经网络
JoannaJuanCV5 小时前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer5 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor5 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc