深度学习(14)--x.view()详解

在torch中,常用view()函数来改变tensor的形状

查询官方文档:

torch.Tensor.view --- PyTorch 2.2 documentationhttps://pytorch.org/docs/stable/generated/torch.Tensor.view.html#torch.Tensor.view示例

1.创建一个4x4的二维数组进行测试

python 复制代码
x = torch.randn(4, 4)
print(x)
print(x.size())

(1).将二维数组变换为一维数组

python 复制代码
y = x.view(16)
print(y)
print(y.size())

(2).将二维数组变换为其他形式的二维数组

python 复制代码
z = x.view(2, 8)
print(z)
print(z.size())

(3).可以将其中一个参数设置为-1,view()会根据已设置的维度自动推断出另外一个维度的大小

复制代码
# the size -1 is inferred from other dimensions
python 复制代码
yy = x.view(-1, 8)
print(yy)
print(yy.size())

zz = x.view(8, -1)
print(zz)
print(zz.size())

可以看到分别得到了2x8的yy和8x2的zz,符合实际的情况。

2.创建一个1x2x3x4的四维矩阵进行测试

python 复制代码
x = torch.rand(1, 2, 3, 4)
print(x)
print(x.size())

(1).将四维数组变换为一维数组

python 复制代码
y = x.view(-1)
print(y)
print(y.size())

(2).将四维数组变换为二维数组

python 复制代码
z = x.view(2,-1)
print(z)
print(z.size())

(3).将四维数组变换为三维数组

python 复制代码
a = x.view(2, -1, 4)
print(a)
print(a.size())

(4).将四维数组转换为其他形式的四维数组

python 复制代码
b = x.view(1, 3, 2, 4)
print(b)
print(b.size())

值得注意的是view()函数并不改变tensor数据在内存中的层次

利用tranpose函数进行验证,transpose函数可以交换数据指定的维度:

python 复制代码
c = x.transpose(1, 2)
print(c)
print(c.size())

transpose(1,2)将第二个维度和第三个维度互换(四维对应的索引是0,1,2,3)

利用equal()函数判断b和c是否相同:

python 复制代码
print("b和c是否相等:")
print(torch.equal(b, c))

由如上结果可知,view()函数并不改变数据在内存中的层次。

相关推荐
张拭心7 分钟前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩39 分钟前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.1182 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751282 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技2 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe2 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen2 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿2 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫3 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
汽车仪器仪表相关领域3 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试