深度学习(14)--x.view()详解

在torch中,常用view()函数来改变tensor的形状

查询官方文档:

torch.Tensor.view --- PyTorch 2.2 documentationhttps://pytorch.org/docs/stable/generated/torch.Tensor.view.html#torch.Tensor.view示例

1.创建一个4x4的二维数组进行测试

python 复制代码
x = torch.randn(4, 4)
print(x)
print(x.size())

(1).将二维数组变换为一维数组

python 复制代码
y = x.view(16)
print(y)
print(y.size())

(2).将二维数组变换为其他形式的二维数组

python 复制代码
z = x.view(2, 8)
print(z)
print(z.size())

(3).可以将其中一个参数设置为-1,view()会根据已设置的维度自动推断出另外一个维度的大小

复制代码
# the size -1 is inferred from other dimensions
python 复制代码
yy = x.view(-1, 8)
print(yy)
print(yy.size())

zz = x.view(8, -1)
print(zz)
print(zz.size())

可以看到分别得到了2x8的yy和8x2的zz,符合实际的情况。

2.创建一个1x2x3x4的四维矩阵进行测试

python 复制代码
x = torch.rand(1, 2, 3, 4)
print(x)
print(x.size())

(1).将四维数组变换为一维数组

python 复制代码
y = x.view(-1)
print(y)
print(y.size())

(2).将四维数组变换为二维数组

python 复制代码
z = x.view(2,-1)
print(z)
print(z.size())

(3).将四维数组变换为三维数组

python 复制代码
a = x.view(2, -1, 4)
print(a)
print(a.size())

(4).将四维数组转换为其他形式的四维数组

python 复制代码
b = x.view(1, 3, 2, 4)
print(b)
print(b.size())

值得注意的是view()函数并不改变tensor数据在内存中的层次

利用tranpose函数进行验证,transpose函数可以交换数据指定的维度:

python 复制代码
c = x.transpose(1, 2)
print(c)
print(c.size())

transpose(1,2)将第二个维度和第三个维度互换(四维对应的索引是0,1,2,3)

利用equal()函数判断b和c是否相同:

python 复制代码
print("b和c是否相等:")
print(torch.equal(b, c))

由如上结果可知,view()函数并不改变数据在内存中的层次。

相关推荐
‿hhh1 小时前
微服务智慧交通管理平台 - 项目实现(结合Qoder搭建)
java·人工智能·机器学习·微服务·架构·需求分析·规格说明书
ysdysyn1 小时前
AI:制造的“智慧预言家”——预测未来、优化现在的智能大脑*
人工智能·程序人生·ai·数据分析·制造
ggabb1 小时前
航空发动机:材料与精密制造的百年突围——从GE双王牌看工业皇冠上的明珠如何炼成
人工智能
喝拿铁写前端7 小时前
别再让 AI 直接写页面了:一种更稳的中后台开发方式
前端·人工智能
tongxianchao8 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
塔能物联运维8 小时前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!9 小时前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左9 小时前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm
IE069 小时前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲9 小时前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架