Pytorch学习03_TensorBoard使用02

Opencv读取图片,获得numpy型数据类型

复制图片的相对路径

目前这种type不适用,考虑用numpy类型

安装opencv,在pytorch环境下

pip install opencv-python

导入numpy

import numpy as np

将PIL类型的img转换为 NumPy 数组

img_array=np.array(img)

HWC三通道

H:高度 W:宽度 C:通道

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image("test",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义

终端运行

tensorboard --logdir=logs --port=6007

点击蓝色链接

点击"IMAGES"

来到

修改一下

使用另一张图片的路径,运行

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
writer.add_image("test",img_array,2,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

回到网站,进行刷新

刷新后

拖动滑轮进行图片查看

拖到左边后,可以看到之前的图片

更换标签

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
# image_path="dataset/train/ants_image/0013035.jpg"
image_path="dataset/train/ants_image/5650366_e22b7e1065.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
# writer.add_image("test",img_array,2,dataformats='HWC')
writer.add_image("train",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

运行后来到网站查看

参考

【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】 https://www.bilibili.com/video/BV1hE411t7RN/?p=9\&share_source=copy_web\&vd_source=be33b1553b08cc7b94afdd6c8a50dc5a

相关推荐
方见华Richard3 分钟前
对话量子场论:语言如何产生认知粒子V0.3
人工智能·交互·学习方法·原型模式·空间计算
wfeqhfxz25887827 分钟前
基于YOLO12-A2C2f-DFFN-DYT-Mona的铁件部件状态识别与分类系统_1
人工智能·分类·数据挖掘
2501_941507948 分钟前
脊柱结构异常检测与分类:基于Cascade-RCNN和HRNetV2p-W32模型的改进方案
人工智能·分类·数据挖掘
划水的code搬运工小李9 分钟前
自制py功能包解析IMU航迹推算
python·imu·航迹推算
珊珊而川9 分钟前
MBE(Model-based Evaluation) LLM-as-a-Judge
人工智能
想用offer打牌15 分钟前
Spring AI vs Spring AI Alibaba
java·人工智能·后端·spring·系统架构
qwerasda12385218 分钟前
车辆超载检测系统:基于YOLO11-C3k2-RFCAConv的高精度识别模型实现与性能评估_1
人工智能
Coco恺撒19 分钟前
【脑机接口】难在哪里,【人工智能】如何破局(1.用户篇)
人工智能·深度学习·开源·生活·人机交互·智能家居
sunlifenger21 分钟前
上海兆越人员定位系统,多元技术赋能,精准守护工业安全
网络·人工智能·安全
玖疯子22 分钟前
TCP/IP协议栈深度解析技术文章大纲
python·scikit-learn·pyqt·pygame