Pytorch学习03_TensorBoard使用02

Opencv读取图片,获得numpy型数据类型

复制图片的相对路径

目前这种type不适用,考虑用numpy类型

安装opencv,在pytorch环境下

pip install opencv-python

导入numpy

import numpy as np

将PIL类型的img转换为 NumPy 数组

img_array=np.array(img)

HWC三通道

H:高度 W:宽度 C:通道

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image("test",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义

终端运行

tensorboard --logdir=logs --port=6007

点击蓝色链接

点击"IMAGES"

来到

修改一下

使用另一张图片的路径,运行

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
writer.add_image("test",img_array,2,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

回到网站,进行刷新

刷新后

拖动滑轮进行图片查看

拖到左边后,可以看到之前的图片

更换标签

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
# image_path="dataset/train/ants_image/0013035.jpg"
image_path="dataset/train/ants_image/5650366_e22b7e1065.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
# writer.add_image("test",img_array,2,dataformats='HWC')
writer.add_image("train",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

运行后来到网站查看

参考

【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】 https://www.bilibili.com/video/BV1hE411t7RN/?p=9\&share_source=copy_web\&vd_source=be33b1553b08cc7b94afdd6c8a50dc5a

相关推荐
冻感糕人~几秒前
【珍藏必备】ReAct框架实战指南:从零开始构建AI智能体,让大模型学会思考与行动
java·前端·人工智能·react.js·大模型·就业·大模型学习
hopsky3 分钟前
openclaw AI 学会操作浏览器抓取数据
人工智能
慢半拍iii4 分钟前
对比源码解读:ops-nn中卷积算子的硬件加速实现原理
人工智能·深度学习·ai·cann
晚烛5 分钟前
CANN 赋能智慧医疗:构建合规、高效、可靠的医学影像 AI 推理系统
人工智能·flutter·零售
小白|5 分钟前
CANN在自动驾驶感知中的应用:构建低延迟、高可靠多传感器融合推理系统
人工智能·机器学习·自动驾驶
驱动探索者6 分钟前
linux mailbox 学习
linux·学习·算法
一枕眠秋雨>o<8 分钟前
深度解读 CANN ops-nn:昇腾 AI 神经网络算子库的核心引擎
人工智能·深度学习·神经网络
ringking1238 分钟前
autoware-1:安装环境cuda/cudnn/tensorRT库函数的判断
人工智能·算法·机器学习
●VON9 分钟前
CANN模型量化:从FP32到INT4的极致压缩与精度守护实战
人工智能
算法狗211 分钟前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型