Pytorch学习03_TensorBoard使用02

Opencv读取图片,获得numpy型数据类型

复制图片的相对路径

目前这种type不适用,考虑用numpy类型

安装opencv,在pytorch环境下

pip install opencv-python

导入numpy

import numpy as np

将PIL类型的img转换为 NumPy 数组

img_array=np.array(img)

HWC三通道

H:高度 W:宽度 C:通道

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image("test",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义

终端运行

tensorboard --logdir=logs --port=6007

点击蓝色链接

点击"IMAGES"

来到

修改一下

使用另一张图片的路径,运行

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
writer.add_image("test",img_array,2,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

回到网站,进行刷新

刷新后

拖动滑轮进行图片查看

拖到左边后,可以看到之前的图片

更换标签

复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
# image_path="dataset/train/ants_image/0013035.jpg"
image_path="dataset/train/ants_image/5650366_e22b7e1065.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
# writer.add_image("test",img_array,2,dataformats='HWC')
writer.add_image("train",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

运行后来到网站查看

参考

【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】 https://www.bilibili.com/video/BV1hE411t7RN/?p=9\&share_source=copy_web\&vd_source=be33b1553b08cc7b94afdd6c8a50dc5a

相关推荐
萧鼎4 分钟前
深入解析 Python 的 pytun 库:虚拟网络接口与隧道技术实战指南
服务器·网络·python
小关会打代码4 分钟前
计算机视觉之多模板匹配
人工智能·计算机视觉
AI 嗯啦5 分钟前
计算机视觉----opencv----身份证号码识别案例
人工智能·opencv·计算机视觉
Re_Yang0918 分钟前
2025年统计与数据分析领域专业认证发展指南
服务器·人工智能·数据分析
西猫雷婶20 分钟前
pytorch基本运算-分离计算
人工智能·pytorch·python·深度学习·神经网络·机器学习
数新网络23 分钟前
PyTorch
人工智能·pytorch·python
程序员miki23 分钟前
RNN循环神经网络(一):基础RNN结构、双向RNN
人工智能·pytorch·rnn·深度学习
自信的小螺丝钉27 分钟前
【大模型手撕】pytorch实现LayerNorm, RMSNorm
人工智能·pytorch·python·归一化·rmsnorm·layernorm
深耕AI28 分钟前
PyTorch图像预处理:ToTensor()与Normalize()的本质区别
人工智能·pytorch·python
T1an-130 分钟前
Axum web框架【实习】
学习·rust