使用 Chainlit, Langchain 及 Elasticsearch 轻松实现对 PDF 文件的查询

在我之前的文章 "Elasticsearch:与多个 PDF 聊天 | LangChain Python 应用教程(免费 LLMs 和嵌入)" 里,我详述如何使用 Streamlit,Langchain, Elasticsearch 及 OpenAI 来针对 PDF 进行聊天。在今天的文章中,我将使用 Chainlit 来展示如使用 Langchain 及 Elasticsearch 针对 PDF 文件进行查询。

为方便大家学习,我的代码在地址 GitHub - liu-xiao-guo/langchain-openai-chainlit: Chat with your documents (pdf, csv, text) using Openai model, LangChain and Chainlit 进行下载。

安装

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

拷贝 Elasticsearch 证书

我们把 Elasticsearch 的证书拷贝到当前的目录下:

bash 复制代码
1.  $ pwd
2.  /Users/liuxg/python/elser
3.  $ cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .
4.  $ ls http_ca.crt 
5.  http_ca.crt

安装 Python 依赖包

我们在当前的目录下打入如下的命令:

bash 复制代码
1.  python3 -m venv .venv
2.  source .venv/bin/activate

然后,我们再打入如下的命令:

bash 复制代码
1.  $ pwd
2.  /Users/liuxg/python/langchain-openai-chainlit
3.  $ source .venv/bin/activate
4.  (.venv) $ pip3 install -r requirements.txt

运行应用

有关 Chainlit 的更多知识请参考 Overview - Chainlit。这里就不再赘述。有关 pdf_qa.py 的代码如下:

pdf_qa.py

ini 复制代码
1.  # Import necessary modules and define env variables

3.  # from langchain.embeddings.openai import OpenAIEmbeddings
4.  from langchain_openai import OpenAIEmbeddings
5.  from langchain.text_splitter import RecursiveCharacterTextSplitter
6.  from langchain.chains import RetrievalQAWithSourcesChain
7.  from langchain_openai import ChatOpenAI
8.  from langchain.prompts.chat import (
9.      ChatPromptTemplate,
10.      SystemMessagePromptTemplate,
11.      HumanMessagePromptTemplate,
12.  )
13.  import os
14.  import io
15.  import chainlit as cl
16.  import PyPDF2
17.  from io import BytesIO

19.  from pprint import pprint
20.  import inspect
21.  # from langchain.vectorstores import ElasticsearchStore
22.  from langchain_community.vectorstores import ElasticsearchStore
23.  from elasticsearch import Elasticsearch

25.  from dotenv import load_dotenv

27.  # Load environment variables from .env file
28.  load_dotenv()

30.  OPENAI_API_KEY= os.getenv("OPENAI_API_KEY")
31.  ES_USER = os.getenv("ES_USER")
32.  ES_PASSWORD = os.getenv("ES_PASSWORD")
33.  elastic_index_name='pdf_docs'

35.  # text_splitter and system template

37.  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)

39.  system_template = """Use the following pieces of context to answer the users question.
40.  If you don't know the answer, just say that you don't know, don't try to make up an answer.
41.  ALWAYS return a "SOURCES" part in your answer.
42.  The "SOURCES" part should be a reference to the source of the document from which you got your answer.

44.  Example of your response should be:

46.  ```
47.  The answer is foo
48.  SOURCES: xyz
49.  ```

51.  Begin!
52.  ----------------
53.  {summaries}"""

56.  messages = [
57.      SystemMessagePromptTemplate.from_template(system_template),
58.      HumanMessagePromptTemplate.from_template("{question}"),
59.  ]
60.  prompt = ChatPromptTemplate.from_messages(messages)
61.  chain_type_kwargs = {"prompt": prompt}

64.  @cl.on_chat_start
65.  async def on_chat_start():

67.      # Sending an image with the local file path
68.      elements = [
69.      cl.Image()
70.      ]
71.      await cl.Message(content="Hello there, Welcome to AskAnyQuery related to Data!", elements=elements).send()
72.      files = None

74.      # Wait for the user to upload a PDF file
75.      while files is None:
76.          files = await cl.AskFileMessage(
77.              content="Please upload a PDF file to begin!",
78.              accept=["application/pdf"],
79.              max_size_mb=20,
80.              timeout=180,
81.          ).send()

83.      file = files[0]

85.      # print("type: ", type(file))
86.      # print("file: ", file)
87.      # pprint(vars(file))
88.      # print(file.content)

90.      msg = cl.Message(content=f"Processing `{file.name}`...")
91.      await msg.send()

93.      # Read the PDF file
94.      # pdf_stream = BytesIO(file.content)
95.      with open(file.path, 'rb') as f:
96.          pdf_content = f.read()
97.      pdf_stream = BytesIO(pdf_content)
98.      pdf = PyPDF2.PdfReader(pdf_stream)
99.      pdf_text = ""
100.      for page in pdf.pages:
101.          pdf_text += page.extract_text()

103.      # Split the text into chunks
104.      texts = text_splitter.split_text(pdf_text)

106.      # Create metadata for each chunk
107.      metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]

109.      # Create a Chroma vector store
110.      embeddings = OpenAIEmbeddings()

112.      url = f"https://{ES_USER}:{ES_PASSWORD}@localhost:9200"

114.      connection = Elasticsearch(
115.          hosts=[url], 
116.          ca_certs = "./http_ca.crt", 
117.          verify_certs = True
118.      )

120.      docsearch = None

122.      if not connection.indices.exists(index=elastic_index_name):
123.          print("The index does not exist, going to generate embeddings")   
124.          docsearch = await cl.make_async(ElasticsearchStore.from_texts)( 
125.                  texts,
126.                  embedding = embeddings, 
127.                  es_url = url, 
128.                  es_connection = connection,
129.                  index_name = elastic_index_name, 
130.                  es_user = ES_USER,
131.                  es_password = ES_PASSWORD,
132.                  metadatas=metadatas
133.          )
134.      else: 
135.          print("The index already existed")

137.          docsearch = ElasticsearchStore(
138.              es_connection=connection,
139.              embedding=embeddings,
140.              es_url = url, 
141.              index_name = elastic_index_name, 
142.              es_user = ES_USER,
143.              es_password = ES_PASSWORD    
144.          )

146.      # Create a chain that uses the Chroma vector store
147.      chain = RetrievalQAWithSourcesChain.from_chain_type(
148.          ChatOpenAI(temperature=0),
149.          chain_type="stuff",
150.          retriever=docsearch.as_retriever(search_kwargs={"k": 4}),
151.      )

153.      # Save the metadata and texts in the user session
154.      cl.user_session.set("metadatas", metadatas)
155.      cl.user_session.set("texts", texts)

157.      # Let the user know that the system is ready
158.      msg.content = f"Processing `{file.name}` done. You can now ask questions!"
159.      await msg.update()

161.      cl.user_session.set("chain", chain)

164.  @cl.on_message
165.  async def main(message:str):

167.      chain = cl.user_session.get("chain")  # type: RetrievalQAWithSourcesChain
168.      print("chain type: ", type(chain))
169.      cb = cl.AsyncLangchainCallbackHandler(
170.          stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
171.      )
172.      cb.answer_reached = True

174.      print("message: ", message)
175.      pprint(vars(message))
176.      print(message.content)
177.      res = await chain.acall(message.content, callbacks=[cb])

179.      answer = res["answer"]
180.      sources = res["sources"].strip()
181.      source_elements = []

183.      # Get the metadata and texts from the user session
184.      metadatas = cl.user_session.get("metadatas")
185.      all_sources = [m["source"] for m in metadatas]
186.      texts = cl.user_session.get("texts")

188.      print("texts: ", texts)

190.      if sources:
191.          found_sources = []

193.          # Add the sources to the message
194.          for source in sources.split(","):
195.              source_name = source.strip().replace(".", "")
196.              # Get the index of the source
197.              try:
198.                  index = all_sources.index(source_name)
199.              except ValueError:
200.                  continue
201.              text = texts[index]
202.              found_sources.append(source_name)
203.              # Create the text element referenced in the message
204.              source_elements.append(cl.Text(content=text, name=source_name))

206.          if found_sources:
207.              answer += f"\nSources: {', '.join(found_sources)}"
208.          else:
209.              answer += "\nNo sources found"

211.      if cb.has_streamed_final_answer:
212.          cb.final_stream.elements = source_elements
213.          await cb.final_stream.update()
214.      else:
215.          await cl.Message(content=answer, elements=source_elements).send()

我们可以使用如下的命令来运行:

ini 复制代码
1.  export ES_USER="elastic"
2.  export ES_PASSWORD="xnLj56lTrH98Lf_6n76y"
3.  export OPENAI_API_KEY="YourOpenAiKey"

5.  chainlit run pdf_qa.py -w
arduino 复制代码
1.  (.venv) $ chainlit run pdf_qa.py -w
2.  2024-02-14 10:58:30 - Loaded .env file
3.  2024-02-14 10:58:33 - Your app is available at http://localhost:8000
4.  2024-02-14 10:58:34 - Translation file for en not found. Using default translation en-US.
5.  2024-02-14 10:58:35 - 2 changes detected

我们先选择项目自带的 pdf 文件:

vbnet 复制代码
Is sample PDF download critical to an organization?
复制代码
Does comprehensive PDF testing have various advantages?
相关推荐
Elasticsearch12 小时前
平衡尺度:利用权重使倒数排序融合 (RRF) 更加智能
elasticsearch
muyun28002 天前
Docker 下部署 Elasticsearch 8 并集成 Kibana 和 IK 分词器
elasticsearch·docker·容器
在未来等你2 天前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试
在未来等你2 天前
Elasticsearch面试精讲 Day 18:内存管理与JVM调优
大数据·分布式·elasticsearch·搜索引擎·面试
Elasticsearch2 天前
在 Elastic Observability 中使用 Discover 的追踪获取更深入的应用洞察
elasticsearch
婲落ヽ紅顏誶2 天前
测试es向量检索
大数据·elasticsearch·搜索引擎
咖啡Beans3 天前
Docker安装ELK(Elasticsearch + Logstash + Kibana)
后端·elasticsearch·docker
一勺菠萝丶3 天前
Jenkins 构建 Node 项目报错解析与解决——pnpm lockfile 问题实战
elasticsearch·servlet·jenkins
小花鱼20253 天前
Elasticsearch (ES)相关
大数据·elasticsearch
阿里嘎多哈基米3 天前
ES——(三)DSL高级查询
elasticsearch·搜索引擎·全文检索·kibana·倒排索引