备战蓝桥杯---动态规划(入门1)

先补充一下背包问题:

于是,我们把每一组当成一个物品,f[k][v]表示前k组花费v的最大值。

转移方程还是max(f[k-1][v],f[k-1][v-c[i]]+w[i])

伪代码(注意循环顺序):

for 所有组:

for v=max.....0

for i:f[v]=max(f[v],f[v-c[i]]+w[i])

下面看看区间dp的应用:

下面是分析:

我们令f[i][j]表示从ai到aj的串中,有多少个匹配的括号。

我们分析最左边的,1.它匹配:f[i][j]=max(f[i][k]+f[k+1][j]),对于最后一个,若可以匹配+2,不可以就不加。

2.他不匹配:f[i][j]=max(f[i+1][j]);

下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int dp[105][105];
string s;
int f(int i,int j){
	if(i>=j) return dp[i][j]=0;
	if(dp[i][j]!=-1) return dp[i][j];
	for(int k=i+1;k<=j-1;k++){
		if((s[i]=='('&&s[k]==')')||(s[i]=='['&&s[k]==']')) dp[i][j]=max(dp[i][j],f(i+1,k-1)+f(k+1,j)+2);
		else dp[i][j]=max(dp[i][j],f(i+1,k-1)+f(k+1,j));
	}
	dp[i][j]=max(dp[i][j],f(i+1,j));
	if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']')){
		dp[i][j]=max(dp[i][j],f(i+1,j-1)+2);
	}
	else dp[i][j]=max(dp[i][j],f(i+1,j-1));
	return dp[i][j];
}
int main(){
	while(cin>>s){
		if(s=="end") break;
		memset(dp,-1,sizeof(dp));
		cout<<f(0,s.size()-1)<<endl;
	}
}

接题:

法1,我们倒序求一串,相当于求他们的公共子序列。

法2.区间dp,f[i][j]表示ai,aj的最长回文子序列。

ai==aj f[i][j]=f[i+1][j-1]+2;

否则,f[i][j]=max(f[i+1][j],f[i][j-1])

下面是AC代码:

cpp 复制代码
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int a[1050][1050];
        int n=s.length();
        for(int j=0;j<=n-1;j++){
            a[j][j]=1;
        }
        for(int j=1;j<=n-1;j++){
            for(int i=j-1;i>=0;i--){
                if(s[i]==s[j]) a[i][j]=a[i+1][j-1]+2;
                else a[i][j]=max(a[i+1][j],a[i][j-1]);
            }
        }
       return a[0][n-1];
    }
};

我们再思考一下:如果是要求连续的?

我们用bool数组f[i][j]表示i---j是否为回文

转移方程:if a[i]==a[j]&&f[i+1][j-1]==1回文,反之不回文

下面看一个具体应用:

我们先不考虑它成环,我们令dp[i][j]为i---j的合并的max,那么我们枚举最后一次合并的分界+i---j的和即可,转移方程为dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1])

我们再考虑成环,其实只是断开点的不同,换句话说,1234的情况变成了1234,2341,3412,4123,我们只要取max即可,为方便同时利用上一次的记入,我们直接for12341234即可。

下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int n,dp[402][402],dp1[402][402],a[402],sum[402];
int f(int i,int j){
    if(i==j) return dp[i][j]=0;
    if(dp[i][j]!=-1) return dp[i][j];
    for(int k=i;k<=j-1;k++){
        dp[i][j]=max(dp[i][j],f(i,k)+f(k+1,j)+sum[j]-sum[i-1]);
    }
    return dp[i][j];
}
int f1(int i,int j){
    if(i==j) return dp1[i][j]=0;
    if(dp1[i][j]!=-1) return dp1[i][j];
    dp1[i][j]=f(i+1,j)+sum[j]-sum[i-1];
    for(int k=i;k<=j-1;k++){
        dp1[i][j]=min(dp1[i][j],f1(i,k)+f1(k+1,j)+sum[j]-sum[i-1]);
    }
    return dp1[i][j];
}
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        sum[i]=sum[i-1]+a[i];
    }
    for(int i=n+1;i<=2*n;i++){
        a[i]=a[i-n];
        sum[i]=sum[i-1]+a[i];
    }
    memset(dp,-1,sizeof(dp));
    memset(dp1,-1,sizeof(dp1));
    int ans1=0,ans2=f1(1,n);
    for(int i=1;i<=n;i++){
        ans2=min(ans2,f1(i,i+n-1));
    }
    cout<<ans2<<endl;
    for(int i=1;i<=n;i++){
        ans1=max(ans1,f(i,i+n-1));
    }
    cout<<ans1<<endl;
}
相关推荐
拼好饭和她皆失几秒前
二分答案算法详解:从理论到实践解决最优化问题
数据结构·算法·二分·二分答案
weixin_457760004 分钟前
逻辑回归(Logistic Regression)进行多分类的实战
算法·分类·逻辑回归
DeltaTime4 分钟前
一 图形学概述, 线性代数
c++·图形渲染
元亓亓亓6 分钟前
LeetCode热题100--215. 数组中的第K个最大元素--中等
算法·leetcode·职场和发展
CoderYanger11 分钟前
C.滑动窗口-求子数组个数-越长越合法——2962. 统计最大元素出现至少 K 次的子数组
java·数据结构·算法·leetcode·职场和发展
Eiceblue17 分钟前
通过 C# 将 RTF 文档转换为图片
开发语言·算法·c#
alphaTao24 分钟前
LeetCode 每日一题 2025/12/8-2025/12/14
算法·leetcode
玖日大大25 分钟前
ModelEngine 可视化编排实战:从智能会议助手到企业级 AI 应用构建全指南
大数据·人工智能·算法
猿饵块26 分钟前
c++17--std::owner_less
开发语言·c++
月明长歌28 分钟前
【码道初阶】Leetcode面试题02.04:分割链表[中等难度]
java·数据结构·算法·leetcode·链表