【机器学习】支持向量机(SVM)

支持向量机(SVM)

1 背景信息

  1. 分类算法回顾

    • 决策树

      • 样本的属性非数值

      • 目标函数是离散的

    • 贝叶斯学习

      • 样本的属性可以是数值或非数值
      • 目标函数是连续的(概率)
    • K-近邻

      • 样本是空间(例如欧氏空间)中的点
      • 目标函数可以是连续的也可以是离散的
    • 支持向量机 (Support Vector Machine)

      • 样本是空间(例如欧氏空间)中的点
      • 目标函数可以是连续的也可以是离散的
  2. 背景信息

    当前版本的支持向量机大部分是由 Vapnik 和他的同事在 AT&T贝尔实验室 开发的

    支持向量机 (Support Vector Machine,SVM)是一个最大间隔分类器(Max Margin Classifier)

    最有效的监督学习方法之一,曾被作为文本处理方法的一个强基准模型(strong baseline)

2 线性支持向量机

  1. 符号函数
    y i = { + 1 , if f ( x i , θ ) <0 − 1 , if f ( x i , θ ) <0 y_i = \begin{cases} +1, & \text{if f(x_i,θ) <0} \\ -1, & \text{if f(x_i,θ) <0} \\ \end{cases} yi={+1,−1,if f(xi,θ) <0if f(xi,θ) <0

    对一个测试样本 x x x,我们可以预测它的标签为 [ f ( x , θ ) ] [f(x,θ)] [f(x,θ)], f ( x , θ ) = 0 f(x,θ)=0 f(x,θ)=0​ 被称为分类超平面

  2. 线性分类器

    • 线性超平面

      f ( x , w , b ) = < x , w > + b = 0 f(x,w,b)=<x,w>+b=0 f(x,w,b)=<x,w>+b=0

      在线性可分的情况下,有无穷多个满足条件的超平面。

    • 线性分类器的间隔(Margin)

      在分类分界面两侧分别放置平行于分类超平面的一个超平面,移动超平面使其远离分类超平面

      当他们各自第一次碰到数据点时,他们之间的距离被称为线性分类器的间隔

      Margin(间隔):分界在碰到数据点之前可以达到的宽度

    • 最大间隔线性分类器------具有最大间隔的线形分类器

      支持向量:那些阻挡间隔继续扩大的数据点

    • 问题形式化

      形式化间隔,我们需要所有数据点满足
      y i ( < x i , w > + b ) ≥ 1 , ∀ i = 1 , . . . , N y_i(<x_i,w>+b)≥1,\ \forall i=1,...,N yi(<xi,w>+b)≥1, ∀i=1,...,N

      分类超平面: < x , w > + b = 0 <x,w>+b=0 <x,w>+b=0,引入平行于分类超平面的两个额外超平面: < x , w > + b = ± 1 <x,w>+b=±1 <x,w>+b=±1

      间隔(margin):两个新的超平面( < x , w > + b = ± 1 <x,w>+b=±1 <x,w>+b=±1​)之间的距离。

      间隔的表达式:两个超平面到原点的距离之差的绝对值: ∣ ρ 1 − ρ 2 ∣ = 2 ∣ w ∣ |ρ_1-ρ_2|=\frac{2}{|w|} ∣ρ1−ρ2∣=∣w∣2

相关推荐
paixingbang1 天前
GEO优化服务商领域崛起三强 自主技术驱动AI搜索与位置智能升级
大数据·人工智能
Luhui Dev1 天前
当模型“知道自己在作弊”:Scheming 与 Reward Hacking 的技术解剖
人工智能
Elaine3361 天前
【验证码识别算法性能对比实验系统——KNN、SVM、CNN 与多模态大模型的性能博弈与机理分析】
python·opencv·支持向量机·cnn·多模态·数字图像处理
AI数据皮皮侠1 天前
全球首个30米分辨率湿地数据集(2000—2022)
大数据·人工智能
SCBAiotAigc1 天前
langchain1.x学习笔记(三):langchain之init_chat_model的新用法
人工智能·python·langchain·langgraph·deepagents
Blossom.1181 天前
联邦迁移学习实战:在数据孤岛中构建个性化推荐模型
开发语言·人工智能·python·深度学习·神经网络·机器学习·迁移学习
Blossom.1181 天前
大模型自动化压缩:基于权重共享的超网神经架构搜索实战
运维·人工智能·python·算法·chatgpt·架构·自动化
KAI智习1 天前
大模型榜单周报(2026/01/10)
人工智能·大模型
AC赳赳老秦1 天前
医疗数据安全处理:DeepSeek实现敏感信息脱敏与结构化提取
大数据·服务器·数据库·人工智能·信息可视化·数据库架构·deepseek
木头程序员1 天前
机器学习模型成员推断攻击与防御:敏感数据保护实战指南
人工智能·机器学习