【机器学习】支持向量机(SVM)

支持向量机(SVM)

1 背景信息

  1. 分类算法回顾

    • 决策树

      • 样本的属性非数值

      • 目标函数是离散的

    • 贝叶斯学习

      • 样本的属性可以是数值或非数值
      • 目标函数是连续的(概率)
    • K-近邻

      • 样本是空间(例如欧氏空间)中的点
      • 目标函数可以是连续的也可以是离散的
    • 支持向量机 (Support Vector Machine)

      • 样本是空间(例如欧氏空间)中的点
      • 目标函数可以是连续的也可以是离散的
  2. 背景信息

    当前版本的支持向量机大部分是由 Vapnik 和他的同事在 AT&T贝尔实验室 开发的

    支持向量机 (Support Vector Machine,SVM)是一个最大间隔分类器(Max Margin Classifier)

    最有效的监督学习方法之一,曾被作为文本处理方法的一个强基准模型(strong baseline)

2 线性支持向量机

  1. 符号函数
    y i = { + 1 , if f ( x i , θ ) <0 − 1 , if f ( x i , θ ) <0 y_i = \begin{cases} +1, & \text{if f(x_i,θ) <0} \\ -1, & \text{if f(x_i,θ) <0} \\ \end{cases} yi={+1,−1,if f(xi,θ) <0if f(xi,θ) <0

    对一个测试样本 x x x,我们可以预测它的标签为 [ f ( x , θ ) ] [f(x,θ)] [f(x,θ)], f ( x , θ ) = 0 f(x,θ)=0 f(x,θ)=0​ 被称为分类超平面

  2. 线性分类器

    • 线性超平面

      f ( x , w , b ) = < x , w > + b = 0 f(x,w,b)=<x,w>+b=0 f(x,w,b)=<x,w>+b=0

      在线性可分的情况下,有无穷多个满足条件的超平面。

    • 线性分类器的间隔(Margin)

      在分类分界面两侧分别放置平行于分类超平面的一个超平面,移动超平面使其远离分类超平面

      当他们各自第一次碰到数据点时,他们之间的距离被称为线性分类器的间隔

      Margin(间隔):分界在碰到数据点之前可以达到的宽度

    • 最大间隔线性分类器------具有最大间隔的线形分类器

      支持向量:那些阻挡间隔继续扩大的数据点

    • 问题形式化

      形式化间隔,我们需要所有数据点满足
      y i ( < x i , w > + b ) ≥ 1 , ∀ i = 1 , . . . , N y_i(<x_i,w>+b)≥1,\ \forall i=1,...,N yi(<xi,w>+b)≥1, ∀i=1,...,N

      分类超平面: < x , w > + b = 0 <x,w>+b=0 <x,w>+b=0,引入平行于分类超平面的两个额外超平面: < x , w > + b = ± 1 <x,w>+b=±1 <x,w>+b=±1

      间隔(margin):两个新的超平面( < x , w > + b = ± 1 <x,w>+b=±1 <x,w>+b=±1​)之间的距离。

      间隔的表达式:两个超平面到原点的距离之差的绝对值: ∣ ρ 1 − ρ 2 ∣ = 2 ∣ w ∣ |ρ_1-ρ_2|=\frac{2}{|w|} ∣ρ1−ρ2∣=∣w∣2

相关推荐
会飞的老朱1 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º3 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee5 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º6 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys6 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56786 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子6 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能6 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144876 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile6 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算