【机器学习笔记】5 机器学习实践

数据集划分

子集划分

训练集(Training Set) :帮助我们训练模型,简单的说就是通过训练集的数据让我们确定拟合曲线的参数。
验证集(Validation Set) :也叫做开发集( Dev Set ),用来做模型选择(model selection),即做模型的最终优化及确定的,用来辅助我们的模型的构建,即训练超参数,可选
测试集(Test Set) : 为了测试已经训练好的模型的精确度。

三者划分:训练集、验证集、测试集,区别与数据量有关

机器学习:60%,20%,20%;70%,10%,20%(不划验证集就75%,25%)

深度学习:98%,1%,1% (假设百万条数据)

交叉验证

  1. 使用训练集训练出k个模型
  2. 用k个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值)
  3. 选取代价函数值最小的模型
  4. 用步骤3中选出的模型对测试集计算得出推广误差(代价函数的值)

不平衡数据的处理

数据不平衡是指数据集中各类样本数量不均衡的情况.

常用不平衡处理方法有采样和代价敏感学习

采样欠采样、过采样和综合采样的方法

SMOTE(Synthetic Minority Over-sampling Technique)算法是过采样中比较常用的一种。算法的思想是合成新的少数类样本,而不是简单地复制样本。算法过程如图:

代价敏感学习

代价敏感学习是指为不同类别的样本提供不同的权重,从而让机器学习模型进行学习的一种方法

比如风控或者入侵检测,这两类任务都具有严重的数据不平衡问题,可以在算法学习的时候,为少类样本设置更高的学习权重,从而让算法更加专注于少类样本的分类情况,提高对少类样本分类的查全率,但是也会将很多多类样本分类为少类样本,降低少类样本分类的查准率。

评价指标(分类问题)


例: 有100张照片,其中,猫的照片有60张,狗的照片是40张。

输入这100张照片进行二分类识别,找出这100张照片中的所有的猫。

正例(Positives):识别对的

负例(Negatives):识别错的

TP、TN对角线的数据越多越好


AUC是ROC曲线下的面积,面积越大越好

PR曲线是精度和昭回度的曲线,曲线下的面积越大越好

正则化、偏差与方差






模型复杂度与误差的关系,一般来说,随着模型复杂度的增加,方差会逐渐增大,偏差会逐渐减小,在虚线处,差不多是模型复杂度的最恰当的选择,其"偏差"和"方差"也都适度,才能"适度拟合"

训练集误差和交叉验证集误差近似时:偏差/欠拟合
交叉验证集误差远大于训练集误差时:方差/过拟合

  1. 获得更多的训练实例------解决高方差
  2. 尝试减少特征的数量------解决高方差
  3. 尝试获得更多的特征------解决高偏差
  4. 尝试增加多项式特征------解决高偏差
  5. 尝试减少正则化程度λ------解决高偏差
  6. 尝试增加正则化程度λ------解决高方差
相关推荐
bu_shuo8 分钟前
将AI生成的数学公式正确复制到word中
人工智能·chatgpt·word·latex
AI科技星11 分钟前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
摘星编程14 分钟前
RAG的下一站:检索增强生成如何重塑企业知识中枢?
android·人工智能
Aaron_94516 分钟前
BitNet:1-bit大语言模型的高效推理框架详解
人工智能·语言模型·自然语言处理
wenzhangli717 分钟前
「1+3 架构驱动」OoderAI 企业级解决方案:破解 AI 落地三大痛点,实现能力可控、交互智能与代码一致
人工智能
视觉&物联智能21 分钟前
【杂谈】-人工智能在风险管理中的应用:愿景与现实的差距
人工智能·网络安全·ai·aigc·agi
寻星探路26 分钟前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
知识分享小能手28 分钟前
Ubuntu入门学习教程,从入门到精通,Ubuntu 22.04中的人工智能—— 知识点详解 (25)
人工智能·学习·ubuntu
cyyt28 分钟前
深度学习周报(1.05~1.11)
人工智能·深度学习
Destiny_where32 分钟前
Claude VSCode插件版接入强大的GLM(无需登录注册claude code)
ide·人工智能·vscode·编辑器·claude code